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Abstract

This dissertation is the summary of the author’s work, concerning the relations between
cohomology rings of algebraic varieties and rings of functions on zero schemes and fixed
point schemes. For most of the thesis, the focus is on smooth complex varieties with
an action of a principally paired group, e.g. a parabolic subgroup of a reductive group.
The fundamental theorem 5.2.11 from co-authored article [66] says that if the principal
nilpotent has a unique zero, then the zero scheme over the Kostant section is isomorphic
to the spectrum of the equivariant cohomology ring, remembering the grading in terms of
a C× action. A similar statement is proved also for the G-invariant functions on the total
zero scheme over the whole Lie algebra. Additionally, we are able to prove an analogous
result for the GKM spaces, which poses the question on a joint generalisation.

We also tackle the situation of a singular variety. As long as it is embedded in a smooth
variety with regular action, we are able to study its cohomology as well by means of
the zero scheme. In case of e.g. Schubert varieties this determines the cohomology ring
completely. In largest generality, this allows us to see a significant part of the cohomology
ring.

We also show (Theorem 6.2.1) that the cohomology ring of spherical varieties appears as
the ring of functions on the zero scheme. The computational aspect is not easy, but one
can hope that this can bring some concrete information about such cohomology rings.
Lastly, the K-theory conjecture 6.3.1 is studied, with some results attained for GKM
spaces.

The thesis includes also an introduction to group actions on algebraic varieties. In
particular, the vector fields associated to the actions are extensively studied. We also
provide a version of the Kostant section for arbitrary principally paired group, which
parametrises the regular orbits in the Lie algebra of an algebraic group. Before proving
the main theorem, we also include a historical overview of the field. In particular we bring
together the results of Akyildiz, Carrell and Lieberman on non-equivariant cohomology
rings.
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CHAPTER 1
Introduction

There is a long history of results which connect global topological invariants of manifold
with some local data. One famous theorem of this kind is the Poincaré–Hopf theorem,
which relates the Euler characteristic of the manifold to the indices of zeros of a vector
field. Another important field following this idea is Morse theory, where the Betti numbers
are determined from the critical points of a Morse function. Some more refined invariants
can be determined this way if one restricts their attention to a particular subfamily of
manifolds. For complex analytic manifolds, Bott [20] proves his residue formula, which
computes the Chern numbers. If we restrict further, to algebraic varieties, Białynicki-
Birula [16, 17] shows the decomposition into affine bundles, which also allows to find
the integral homology groups of the variety, and hence also the additive structure of
cohomology.

A natural question one could ask is whether in addition to such quantitative invariants,
one can determine the ring structure of cohomology. This was first done by Carrell and
Lieberman in their seminal paper [36]. They show that if a holomorphic vector field on a
compact Kähler manifold X has isolated zeros, then:

1. the manifold is actually algebraic;

2. its odd cohomology vanishes;

3. the coordinate ring of the zero scheme of the vector field has a filtration whose
associated graded ring is H∗(X,C).

In [4] Akyildiz and Carrell further show that if the Borel of SL2 acts on X and the vector
field is the one defined by

e =
(︄

0 1
0 0

)︄
,

then the filtration is determined by the torus action and moreover, it actually comes
from a grading, so that we see H∗(X,C) as the coordinate ring of the zero scheme. This
allows one to see geometrically the cohomology ring of flag varieties or smooth Schubert
varieties. Later, Akyildiz, Carrell and Lieberman managed to produce results that apply
to a limited class of singular varieties, which includes in particular all Schubert varieties.
This required considering a deformed zero scheme, which then in [28] was proven to be

1



1. Introduction

the spectrum of C×-equivariant cohomology. This is defined over the base e+ t, consisting
of all the matrices (︄

t 1
0 −t

)︄
in SL2. In fact, one also notices, as in Theorem 3.3.3, that the line e+ t has the property
analogous to the Kostant section in semisimple groups [82], i.e. every regular element of
the Lie algebra B(SL2) is conjugate to a unique element of e+ t. Here an element of the
Lie algebra is called regular when its centraliser is of minimal dimension, equal to the
dimension of the maximal torus.
In the meantime, in the recent work [65] a certain infinitesimal fixed point scheme
for the action of GLn on Gr(k, n) – the Grassmannian of k-planes in Cn – was used
to model the Hitchin map on a particular minuscule upward flow in the GLn-Higgs
moduli space. In turn, it was noticed that this fixed point scheme is isomorphic to the
spectrum of equivariant cohomology of Gr(k, n), and thus the Hitchin system on these
minuscule upward flows can be modelled as the spectrum of equivariant cohomology of
Grassmannians. Motivated by that, we have shown in [66] that the appearance of the
spectrum of equivariant cohomology as a fixed point scheme is not a coincidence, and
holds in more general situations. This provides a generalisation of the result of Brion
and Carrell. The one-dimensional torus C× is replaced by an arbitrary principally paired
group. This includes in particular all the reductive groups and their parabolic subgroups.
Hence, one can work with the groups of higher rank, but also not necessarily tori.

Definition 1.1. A complex linear algebraic group H is principally paired if it contains a
pair {e, h} ⊂ h in its Lie algebra, such that [h, e] = 2e and e is a regular nilpotent, and an
algebraic group homomorphism B(SL2) → H integrates the Lie subalgebra of h generated
by e and h.

By Jacobson–Morozov theorem, reductive groups satisfy the condition, and it also stays
true if we restrict to a Borel subgroup. Then it also holds for all parabolic subgroups.
We then prove in Corollary 3.3.18 that in this generality one can also construct the
equivalent S of the Kostant section. This is an affine subspace consisting of regular
elements of the Lie algebra h. It has the property that every regular element of h is
conjugate to exactly one element of of S. We prove it by first tackling the solvable group
case and then considering the Weyl group action for a general principally paired group.
Moreover, the restriction map C[h]H → C[S] is an isomorphism, and by Chevalley’s
restriction theorem C[h]H = C[t]W is the H-equivariant cohomology ring of the point.
Therefore the spectrum of any H-equivariant cohomology ring will be a scheme over S.
This suggests that in order to see SpecH∗

H(X,C) as a zero scheme, we might want to
consider a zero scheme parametrised by S. As a subscheme of S ×X, it will be projective
over S, and hence to ensure that it is affine, we need it to be finite over S.

Definition 1.2. An action of a principally paired group H on a smooth projective variety
X is regular when a regular nilpotent element e ∈ h has finitely many fixed points.

In fact a unipotent element always has a connected fixed point set [70], so for a regular
action we have Xu = {o} for some o ∈ X.
Examples of H-regular varieties include for H = G reductive the partial flag varieties G/P
considered above (see [2]). Smooth Schubert varieties are regular when H = B ⊂ G is a

2



Borel subgroup and Bott–Samelson resolutions will be examples for parabolic subgroups
H = P ⊂ G of reductive groups.
We then construct in Section 2.5.1 a vector field Vh on h ×X such that for any y ∈ h its
restriction

(Vh)y ∈ H0(X;TX)
to {y} ×X is the infinitesimal vector field on X generated by y. We restrict this vector
field to a vector field VS on S × X and consider its zero scheme ZS ⊂ S × X. The
embedding of the Borel subgroup of SL2 provides a particular one-dimensional torus in
the maximal torus T of H. It will then act on ZS and thus make the ring of functions
on ZS into a graded ring, by the weights of the induced action. We then prove the main
result

Theorem 1.3. Suppose a principally paired group H acts regularly on a smooth projective
complex variety X. Then the zero scheme ZS ⊂ S ×X of the vector field VS is reduced
and affine and its coordinate ring, graded by the C×-action, is isomorphic as a graded ring

C[ZS ] H∗
H(X;C)

C[S] H∗
H

∼=

∼=

π∗

to the H-equivariant cohomology of X, such that the structure map H∗
H → H∗

H(X;C)
agrees with the pullback map H∗

H
∼= C[S] → C[ZS ] of the natural projection π : ZS → S.

In particular,
ZS Spec(H∗

H(X;C))

S Spec(H∗
H),

π

∼=

∼=

i.e. the spectrum of equivariant cohomology of X is C×-equivariantly isomorphic to the
zero scheme ZS ⊂ S ×X over S ∼= Spec(H∗

H).

Again, we first study the case of solvable principally paired groups. Then the general
case is reduced to the Borel subgroup, and we realise the Weyl group action on the zero
scheme geometrically.
There is another version of Theorem 1.3 where we do not restrict to the Kostant section
S. Namely, if a reductive group G acts regularly on X and we denote by Zg ⊂ g ×X the
zero scheme of Vg, then the G-action on g×X leaves Zg invariant. We have the following:

Theorem 1.4. Suppose a complex reductive group G acts regularly on a smooth projective
complex variety X. Then the G-invariant part of the algebra of the global functions on
the total zero scheme Zg

C[Zg]G H∗
G(X;C)

C[g]G H∗
G

∼=

∼=

is graded isomorphic with the equivariant cohomology of X over C[g]G ∼= H∗
G. The gradings

on C[g]G and C[Zg]G are induced from the weight −2 action of C× on g and the trivial
action on X.

3



1. Introduction

Note that for partial flag varieties X = G/P the total zero scheme Zg
∼= g̃P → g is just the

Grothendieck–Springer resolution. However, the total zero scheme is no longer affine. On
the other hand this version also holds for GKM spaces, including toric varieties. Recall
[54] that a smooth projective variety X with an action of a torus T is a GKM space if the
number of both the zero- and one-dimensional orbits is finite. We can form the total zero
scheme Zt ⊂ t ×X as the zero scheme of the vector field Vt generated by the T-action, as
before. We prove that the ring of functions on such a scheme is again the T-equivariant
cohomology of X.

The proof is straightforward, using the explicit description of H∗
T(X;C) from [54]. We

expect this version to hold for an even larger class of group actions, including spherical
varieties. However, in this thesis we concentrate on the more restrictive class of regular
group actions. In that case, as in Theorem 1.3, we can find an affine zero scheme
ZS ⊂ S ×X, which is precisely the spectrum of equivariant cohomology of X.

The proofs of the main results are broadly following the approach of the proof in [28].
For this, we have to first study the structure of Z, i.e. we prove it is a reduced Cohen–
Macaulay scheme whose points can be described via the torus-fixed points. Then the
isomorphism H∗

G(X) → C[Z] is defined by localisation to the fixed points. Using similar
methods, we are also able to prove that even under milder assumptions, we can see the
cohomology ring as the ring of functions.

Theorem 1.5. Assume that a principally paired group H acts on a smooth projective
variety X. Let Z ⊂ S × X be the zero scheme as above. Assume that dim Z = dim S.
Then there is an isomorphism

H∗
H(X,C) → C[Z]

of graded C[S] ≃ H∗
H(pt,C)-algebras. Moreover, H i(Z,OZ) = 0 for any i > 0.

This clearly covers the case of a regular action, although the conclusion is weaker: the
scheme Z is not affine anymore. This in principle makes computations less feasible.
However, the theorem covers many interesting examples, including all varieties with
finitely many orbits. A particularly important class of such consists of spherical varieties
[24]. Their cohomology is not very well understood and one could hope that this approach
would allow for a better insight.

One should also mention that there are other papers in the literature which study the
spectrum of the equivariant cohomology geometrically, see e.g. [53] and the references
therein. A more recent example is [67], where the spectrum of equivariant cohomology
of certain varieties also appears as a fixed point scheme, albeit of another – 3D-mirror –
variety. This is also a common theme when one studies elliptic cohomology – i.e. one sees
a whole elliptic curve instead of the functions on it, and only recovers the cohomology ring
by considering sections of line bundles. We would hope that our results can be translated
to elliptic cohomology as well. It is however not obvious, what the correct analog of
the zero scheme should be. For now, we are able to formulate the analogous conjecture
6.3.1 in K-theory, where we replace the zero schemes of vector fields with the fixed point
schemes of the group action. We also provide some evidence for the conjecture

In addition, we extend the results of [28] for singular varieties. It turns out that one can
see either the whole cohomology ring, or the subalgebra generated by equivariant Chern
classes, via the rings of functions on zero schemes.
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This thesis is organised as follows. Chapter 2 describes the necessary background material
from homological algebra, algebraic geometry and algebraic topology. It starts with the
Koszul resolutions and their applications in geometry. Then we describe the theory of
algebraic groups and group actions. Due to the character of the results, the emphasis
is put on the Lie algebra and the vector fields defined by the Lie algebra elements. To
the author’s knowledge, there is no comprehensive exposition of the topic in the existing
literature. We also recall the definition of equivariant cohomology and its basic properties,
and the relation with linearised vector bundles.

Chapter 3 is based on Section 2 of [66]. We introduce the notion of a principally paired
group and develop the theory of Kostant sections in this generality. We also prove that the
regular action implies finite zero sets for any regular element of the Lie algebra. Chapter
4 is a historical interlude, based on the results of Akyildiz, Brion, Carrell, Lieberman,
Sommese [4, 28, 36]. We review there the results which allow one to see the ordinary (i.e.
non-equivariant) cohomology of a smooth projective variety in terms of zero schemes of
vector fields.

Then, in Chapter 5 we include the main results of [66], i.e. the Sections 3, 4, 5 ibid. In
particular, we prove Theorem 1.3. We start from solvable groups and afterwards prove it
in the generality of principally paired groups. Then the result is extended to the singular
varieties, in the spirit of [28]. We also prove the version for total zero scheme, i.e. Theorem
1.4 and a surprising analogous result for GKM spaces.

In Chapter 6, we then describe additional results of the author that extend the results of
[66]. First, we tackle the case of wilder singularities than the results of [66] allow. Second,
we relax the assumptions on regularity of the action, as in Theorem 1.5, and open the
field for further exploration, to determine the appropriate conditions under which the
results hold. In particular, we show that the equivariant cohomology ring of spherical
varieties shows up as the ring of functions on the zero scheme. Then we state the K-theory
conjecture and prove that it holds for GKM varieties.

Throughout this thesis, we adopt the convention where we try to stay in the category of
algebraic schemes whenever possible, i.e. not using the topological and analytic tools if
they are not necessary. Therefore many results, in particular on Lie algebras of algebraic
groups and associated vector fields, might have slightly longer proofs than one would
expect. However, as the literature in the field is not very extensive, we find it instructive
to prove as much as possible without resorting to non-algebraic methods. This requires
translation of cohomology, which is a topologically defined notion, into the algebraic world.
At the heart of this lies the result of Carrell–Lieberman, i.e. Theorem 4.2.1, which uses
non-algebraic methods.
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CHAPTER 2
Background material

Throughout this thesis, we are working with algebraic groups acting on algebraic varieties,
and with cohomology theories. We therefore need to recall many results we are going
to use. We first explain the role of Koszul complexes in algebraic geometry and their
cohomological properties. We recall the basic facts about vector fields in algebraic setting,
and then we couple that with algebraic groups and Lie algebras, and their actions on
algebraic varieties. As a particular case we have the actions of an algebraic torus, which
yield the Białynicki-Birula decomposition of the variety. Then we recall the definition of
equivariant cohomology and the equivariant formality as defined in [54]. We finish with
an overview of equivariant vector bundles and their Chern classes. For completeness, we
attach the proof of the graded Nakayama lemma, which, though very simple, is not easily
found in literature.

2.1 Notation
An algebraic variety is an integral (i.e. irreducible and reduced) separated scheme of finite
type over a field.
Unless otherwise specified, all the groups and varieties will be assumed to be defined over
C. All rings are by definition assumed to be commutative and with unity. For a scheme
X defined over a field k, by k[X] = OX(X) we denote the algebra of regular functions on
X. All the cohomology groups will be understood to have complex coefficients, unless
otherwise specified. For a Lie algebra g and a subset V ⊂ g we denote by Cg(V ), Ng(V )
the centraliser and normaliser of V in g, respectively. If V = {v}, then we also write
Cg(v), Ng(v). Analogously by CG(V ), NG(V ) we denote a centraliser and normaliser of
a subset V in a group G. For any Z≥0-graded vector space R = ⨁︁∞

n=0 Rn over a field k,
with dimk(Rn) finite for every n, we denote by PR(t) its Poincaré series, i.e.

PR(t) =
∞∑︂
n=0

dimk(Rn)tn.

For any algebra R with a filtration F•, by GrF (R) we denote the associated graded algebra.
Let diag(v1, v2, . . . , vn) be the diagonal n× n matrix with diagonal entries v1, v2, . . . , vn.
We will denote by In = diag(1, 1, . . . , 1) the n× n identity matrix. Whenever we write
x ∈ X for X being a variety, or g ∈ G for G being an algebraic group, we mean x or g
being a closed point.
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2. Background material

2.2 Regular sequences, Cohen–Macaulay rings and
Koszul complexes

The most important sources for this section are [29] for Cohen–Macaulay rings, as well as
[76] for Koszul complexes and their applications in local cohomology. Throughout this
section, R will denote a commutative ring. We recall a few definitions.

2.2.1 Cohen–Macaulay and complete intersection rings
Definition 2.2.1. A sequence (r1, r2, . . . , rk) of elements of R is called regular if the
following two conditions hold:

1. for i = 1, 2, . . . , k, the image of ri in R/(r1, r2, . . . , ri−1) is not a zero divisor;

2. the ring R/(r1, r2, . . . , rk) is nonzero.

Geometrically, one should think of regular sequence as a sequence of functions cutting
out a subscheme of codimension equal to its length. Indeed, by Krull’s Hauptidealsatz
[11, Corollary 11.17] any component of a scheme cut out by a regular non-unit is of
codimension one. Locally, if R is a local Cohen–Macaulay ring (see Definition 2.2.3), then
a sequence (r1, r2, . . . , rk) is regular if and only if dimR/(r1, r2, . . . , rk) = dimR − k [29,
Theorem 2.1.2(c)].

Obviously, by definition, any prefix of a regular sequence is regular. However, in this
generality, the regularity of a sequence depends on its order. A typical example that
illustrates this phenomenon is the sequence (x− 1, xy, xz) in R = C[x, y, z]. It is clearly
regular, however its permutation (xy, xz, x − 1) is not regular, as xz is a zero divisor
in R/(xy). Regularity does not depend on the order for a Noetherian local ring [29,
Proposition 1.1.6]. We will use below (Lemma 5.1.10) that also in some graded situations
the regularity does not depend on the ordering. We first note the following property of
Poincaré series with respect to quotients by regular series.

Proposition 2.2.2. Assume that R = ⨁︁∞
i=0 Rn is a graded ring over a field k, and

dimk Rn < ∞ for every n ≥ 0. Let r1, r2, . . . , rk be a regular sequence of homogeneous
elements of degrees d1, d2, . . . , dk, respectively. Then

PR/(r1,r2,...,rk)(t) =
k∏︂
i=1

(1 − tdi) · PR(t).

Proof. By induction it is enough to prove the statement for k = 1. Assume then that r is
a regular element, i.e. not a zero divisor, of R, homogeneous of degree d. Then the graded
R-module rR is isomorphic to R as a module, but its grading is shifted by d. Therefore
PrR(t) = tdPR(t). Hence

PR/rR(t) = PR(t) − PrR(t) = (1 − td)PR(t).

Definition 2.2.3. A Noetherian local ring (R,m) is called Cohen–Macaulay if its depth
depthR, i.e. the maximal length of a regular sequence, equals its dimension dimR, i.e.
the maximal length of a chain of prime ideals.
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2.2. Regular sequences, Cohen–Macaulay rings and Koszul complexes

Note that for any Noetherian local ring R we have depthR ≤ dimR [29, Proposition
1.2.12]. Any regular local ring is Cohen–Macaulay, but the converse is not true, e.g. the
ring C[x]/(x2) is Cohen–Macaulay, but not regular.

Definition 2.2.4. An arbitrary Noetherian ring R is called Cohen–Macaulay if all its
localisations to maximal ideals are Cohen–Macaulay.

Similarly, a locally Noetherian scheme is called Cohen–Macaulay if all its localisations are
Cohen–Macaulay.

By [29, Theorem 2.1.3] all localisations of a Cohen–Macaulay ring are Cohen–Macaulay,
hence both cases of above definition agree for affine schemes, i.e. SpecR is a Cohen–
Macaulay scheme if and only if R is a Cohen–Macaulay ring. One also easily notices that if
R is Cohen–Macaulay and (r1, r2, . . . , rk) is a regular sequence in R, then R/(r1, r2, . . . , rk)
is Cohen–Macaulay.

We also mention a more general notion of a complete intersection ring.

Definition 2.2.5. A Noetherian local ring (R,m) is called a complete intersection ring
if its completion R̂ in m is a quotient of a regular local ring by an ideal generated by a
regular sequence.

We call any Noetherian ring locally complete intersection if all of its localisations are
complete intersection rings.

A complete intersection ring, and more generally a locally complete intersection ring
is always Cohen–Macaulay [29, 2.3]. We say that a finite type k-algebra R is complete
intersection if there is a presentation R ≃ k[x1, x2, . . . , xn]/(f1, f2, . . . , fr) where dimR =
n− c. Any complete intersection algebra is a local complete intersection, and hence also
Cohen–Macaulay. The complete intersection condition is easier to picture geometrically –
it means that one is able to cut out the spectrum of given algebra from an affine space
with the minimal possible number of equations.

2.2.2 Koszul complexes in rings
Let R be a Noetherian ring and r1, r2, . . . , rn a sequence of elements of R. For i =
1, 2, . . . , n we consider the chain complex

0 → R
ri−→ R → 0.

Note that if ri is a regular element, then this is a free resolution of the cyclic R-module
R/(ri). Consider the tensor product of all such complexes for i = 1, 2, . . . , n. Explicitly,
it is the complex

0 →
n⋀︂
Rn ϕn−→

n−1⋀︂
Rn ϕn−1−−−→

n−2⋀︂
Rn ϕn−2−−−→ . . .

ϕ3−→
2⋀︂
Rn ϕ2−→

1⋀︂
Rn ϕ1−→

0⋀︂
Rn → 0,

where the map ϕk : ⋀︁k Rn → ⋀︁k−1 Rn is defined on the basis as

ϕk(ei1 ∧ ei2 ∧ · · · ∧ eik) =
k∑︂
j=1

(−1)j+1rj · ei1 ∧ · · · ∧ êij ∧ · · · ∧ eik .
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2. Background material

Definition 2.2.6. We call this complex the Koszul complex associated to the sequence
(r1, r2, . . . , rn), and we denote it by K∗

r1,...,rn
.

When speaking of Koszul complexes, we will consider them with negative cohomological
grading. In other words, we let K−k

r1,...,rn
= ⋀︁k Rn to be of the degree −k, so that the

differential increases the grading by 1. Note that the 0-th cohomology of the complex is
the quotient R/(r1, r2, . . . , rn).

Proposition 2.2.7. If (r1, r2, . . . , rn) is a regular sequence of regular elements in R, then
the Koszul complex K∗

r1,r2,...,rn
is a free resolution of R/(r1, r2, . . . , rn).

Remark 2.2.8. As reordering gives an isomorphic Koszul complex, it will be a free resolution
if we only assume that (r1, r2, . . . , rn) is a permutation of a regular sequence. Thus there
is no implication in the other direction.

For simplicity we assume that all the elements ri are regular in R, as that is the only case
we need. However this assumption is not necessary, see e.g. [29, Corollary 1.6.14].

Proof. As noticed above, the chain complex

0 → R
ri−→ R → 0

is a resolution of R/(ri) for i = 1, 2, . . . , n. We just have to prove that the cohomology of
their tensor product (for i = 1, 2, . . . , n) is the tensor product of cohomology.

We proceed by induction and prove that for each k the Koszul complex K∗
r1,...,rk

has only
cohomology R/(r1, r2, . . . , rk) in degree 0. It is obvious for k = 0 or k = 1. Let us now
assume that it holds for some k ∈ {1, 2, . . . , n− 1}. As

K∗
r1,r2,...,rk+1

= K∗
r1,r2,...,rk

⊗K∗
rk+1

,

there is a Künneth spectral sequence [96, Theorem 10.90]

E2
pq =

⨁︂
p1+p2=p

Tor−q(Hp1(K∗
r1,r2,...,rk

), Hp2(K∗
rk+1

)) =⇒ Hp+q(K∗
r1,r2,...,rk+1

).

By the inductive assumption, the entries may be nonzero only for p1 = p2 = 0 only, which
gives

Hq(K∗
r1,r2,...,rk+1

) = Tor−q(R/(r1, . . . , rk), R/rk+1).
But we know the (two-term) resolution of R/rk+1 explicitly. Therefore, as rk+1 is regular
in R/(r1, . . . , rk), we see after tensoring with R/(r1, . . . , rk) that the cohomology of

0 → R/(r1, . . . , rk)
ri−→ R/(r1, . . . , rk) → 0

is only R/(r1, . . . , rk+1) in degree 0, hence the highers Tor’s vanish.

2.2.3 Koszul resolutions on algebraic varieties
As we have seen above, the Koszul complex of a regular sequence is a free resolution of
the quotient module R/(r1, r2, . . . , rn). It can be seen as a complex of free sheaves over
SpecR. It then resolves the zero scheme of the global functions on SpecR defined by r1,
r2, . . . , rn. Equivalently, it is the zero scheme of the corresponding section of a trivial
rank n bundle. As acyclicity of a complex is a local property, we can generalise this to
obtain resolutions of zeros of arbitrary vector bundles.
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2.2. Regular sequences, Cohen–Macaulay rings and Koszul complexes

Theorem 2.2.9. Let X be a Cohen–Macaulay locally Noetherian scheme and let E be a
vector bundle on X of rank n. Assume that V is a global section of E whose zero scheme
Z is of pure codimension n in X. Then the Koszul complex

0 → ΛnE∗ → Λn−1E∗ → · · · → E∗ → OX → 0

defined by the contraction along V is a locally free resolution of OZ .

Note that one can define the zero scheme of a section of a vector bundle by locally
trivializing the bundle and considering the zero scheme of the ideal generated by the
coordinates (as we do in Lemma 5.1.10). One then needs to prove that the definition is
independent of the trivialization.

Another, coordinate-free way to define the zero scheme is the following.

Definition 2.2.10. Let V be a global section of a vector bundle E of rank n on a scheme
X. Then we define the zero scheme Z of V as the closed subscheme defined by the image
of the contraction E∗ ιV−→ OX .

One then sees immediately that, by definition, the 0-th cohomology of the Koszul complex
is OZ , regardless of the codimension of Z. It is only the acyclicity in other degrees which
we need to check.

Proof of Theorem 2.2.9. It is enough to prove the statement upon localisation to any
closed point of X by [85, Chapter 1, Lemma 2.12]. Let then x ∈ X be a closed point. Let
us fix an isomorphism E|X,x ≃ On

X,x, where by E|X,x we mean the localisation to Spec OX,x.
Then it also gives an isomorphism E∗|X,x ≃ On

X,x and the contraction E∗|X,x → OX,x is
then a map of free OX,x-modules defined by n elements r1, r2, . . . , rn ∈ OX,x. The complex
above, upon localisation to Spec OX,x, becomes the Koszul complex of the sequence
(r1, r2, . . . , rn) in OX,x.

We consider two cases: x ∈ Z and x ̸∈ Z. Assume first that x ∈ Z. This means that
OX,x/(r1, r2, . . . , rn) = OZ,x is of codimension n in OX,x. Therefore by [29, Theorem
2.1.2(c)] the sequence r1, r2, . . . , rn is regular in OX,x. This means that the Koszul
complex is a resolution of the quotient.

Now assume that x ̸∈ Z. This means that (r1, r2, . . . , rn) = OX,x as an ideal in OX,x.
Then by [29, Theorem 1.6.17], the local Koszul complex is acyclic at all entries.

If the assumptions of Theorem 2.2.9 are satisfied, we are therefore able to provide
resolutions of OZ , which in some cases might be a useful tool for computing derived
functors. We will see below (Theorem 4.2.1) how this method arises in the work of Carrell
and Lieberman [35]. We later reuse it in the proof of Theorem 6.2.1. In particular, the
following spectral sequence will be useful.

Corollary 2.2.11. Under assumptions of Theorem 2.2.9, there is a (cohomological)
spectral sequence with the first page

Epq
1 = Hq(X,Λ−pE∗)

convergent to Hp+q(X,OZ).
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2. Background material

Proof. This is a particular case of a spectral sequence from [75, Remark 2.67], here used to
compute the hypercohomology Hq = RΓ of the Koszul complex. As the Koszul complex
resolves OZ , it is isomorphic to it in the derived category. Hence we de facto compute
cohomologies of OZ .

2.3 Vector fields and derivations
A vector field on a smooth algebraic variety X is a derivation on the sheaf of regular
functions on X. This means that for any Zariski-open subset U ⊂ X we are given a
C-linear derivation OX(U) → OX(U) and it is natural with respect to U . If we restrict to
an affine neighbourhood SpecR, this gives a derivation R → R, which then restricted to
any maximal ideal m ◁ R yields a C-linear map m → R/m ≃ C vanishing on m2. Hence if
x is the closed point corresponding to m, it defines a tangent vector Vx ∈ Tx,X .

Definition 2.3.1. Let V be a vector field on a smooth variety X. For each open set
U ⊂ X it defines a derivation DU

V : OX(U) → OX(U). Let us consider the ideal sheaf
generated by the image DV (OX) ⊂ OX . This is the defining ideal of the zero scheme ZV

of V on X.

By the definition of the cotangent bundle, the ideal sheaf generated by DV (OX) is the
same as the image of the contraction map Ω1

X
ιV−→ OX . Hence our definition of the zero

scheme agrees with the previous Definition 2.2.10 of the zero scheme of an arbitrary vector
bundle.
Remark 2.3.2. One can also view vector fields on smooth varieties as sections of the tangent
bundle. As the tangent bundle is a locally free sheaf, we can define the zero scheme of the
vector field by considering it locally as a tuple of regular functions (see Lemma 5.1.10).
In other words, if the tangent bundle is free over an open subset U ⊂ X, after choosing a
trivialisation, its section V is defined by n-tuple of regular functions f1, f2,. . . , fn. Then
the zero scheme of V on U is the zero scheme of the ideal (f1, f2, . . . , fn) ∈ OX(U).

For any two vector fields V , W their Lie bracket [V,W ] is a vector field, as the Lie bracket
of two derivations is again a derivation. We denote by Vect(X) the Lie algebra of all the
global vector fields on a smooth variety X. The technical lemmas below will be of use
when we consider the vector fields defined by elements of Lie algebras.

Lemma 2.3.3. Let A be a commutative C-algebra. Let DY : A → A be a C-linear
derivation and V a C-vector space of C-derivations A → A normalised by DY , i.e. for
any DW ∈ V we have [DW , DY ] ∈ V. Denote by I = (imDW )DW ∈V the ideal generated by
all the images of the derivations from V. Then DY (

√
I) ⊂

√
I.

Proof. We first prove that DY (I) ⊂ I. As I is generated by the images of derivations
from V and DY is C-linear, it is enough to prove that DY (f ·DW (g)) ∈ I for any f, g ∈ A
and DW ∈ V . By the Leibniz rule

DY (f ·DW (g)) = DY (f) ·DW (g) + f ·DYDW (g)

and DW (g) ∈ I, hence it is enough to prove that DYDW (g) ∈ I. But by assumption we
have DZ = DYDW −DWDY ∈ V . Hence

DYDW (g) = DZ(g) +DWDY (g.)
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2.3. Vector fields and derivations

Thus the images of both DZ and DW are in I, hence DYDW (g) ∈ I.

Now assume that f ∈
√

I so that fk ⊂ I. Using DY (I) ⊂ I, we get Dk
Y (I) ⊂ I. Hence

Dk
Y (fk) ∈ I ⊂

√
I. By the Leibniz rule Dk

Y (fk) is the sum of terms of the form
k∏︂
i=1

(Dαi
Y f)

for nonnegative integers α1, α2 . . . , αk such that α1 + α2 + · · · + αk = k. Note that for all
the terms except for (DY f)k, at least one of α1, α2, . . . , αk is zero, and all those terms
belong to

√
I, as f ∈

√
I. Therefore we get (DY f)k ∈

√
I, hence DY f ∈

√
I.

As a geometric counterpart, we get the following lemma, which will prove very useful in
our proofs.

Lemma 2.3.4. Let Y be a vector field on a smooth variety X. Assume that V is a
C-linear subspace of Vect(X). If Y normalises V, i.e. [Y,V] ⊂ V, then Y is tangent to
the reduction of the zero scheme of V.

In particular, if a subspace V ⊂ Vect(X) has isolated (simultaneous) zeros, then they are
fixed by the normaliser NVect(X)(V) of V in Vect(X).

Remark 2.3.5. From now on, we will keep the reduction of the zero scheme simply the
reduced zero scheme.

Note that even the reduced zero scheme of V may be singular. A vector from the tangent
space to X at x is considered tangent to a reduced subscheme Z ∋ x if it is in the image
of the tangent space to Z at x. Equivalently, in a local affine neighbourhood it annihilates
all the functions that vanish on Z, i.e. those from the defining ideal of Z. A vector field
is tangent to a reduced subscheme Z if it is tangent to Z at all the closed points of Z.
Equivalently, the associated derivation maps the defining ideal of Z to itself.

Proof. As the statement is local, we can assume that X = SpecA is affine. The space
V gives rise to a vector space of C-derivations A → A, and Y to a single derivation
DY : A → A. The reduced zero scheme of V is defined by the ideal J =

√︂
(imDW )DW ∈V .

By Lemma 2.3.3 we then get DY J ⊂ J . This means that Y is tangent to the scheme
defined by J .

Remark 2.3.6. There is an alternate, analytic proof, which works under the assumption
of V being finite-dimensional – which will always be the case for us. It is non-algebraic
and hence also non-translatable to other fields, but one could argue it is less technically
demanding. Moreover it can be applied to general differentiable manifolds, without
algebraicity assumption. Hence we present it here as well. In fact, the finite dimensionality
assumption can also be dropped, if we use the fact that the functions we deal with are all
analytic, hence they vanish locally if all the derivatives in a point vanish – this approach
mimics the algebraic proof.

Let ϕ = [Y,−]
⃓⃓⃓
V

be the commutator map V → V induced by Y . Let x ∈ X be fixed by V
and let us consider local one-parameter subgroup Ψt around x defined by the vector field
Y . For any vector field W we have

[Y,W ]x = d

dt

(︂
(DxΨt)−1WΨt(x)

)︂ ⃓⃓⃓
t=0
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and analogously
[Y,W ]Ψt(x) = d

du

(︂
(DxΨu)−1WΨt+u(x)

)︂ ⃓⃓⃓
u=0

.

Composing this with the linear map (DxΨt)−1 we get, for W ∈ V , the following:

(DxΨt)−1ϕ(W )Ψt(x) = d

du

(︂
(DxΨu)−1WΨu(x)

)︂ ⃓⃓⃓
u=t
.

Hence if we consider the map τ : (−ε, ε) → Hom(V , TxX) defined as

τ(t)(W ) = (DxΨt)−1WΨt(x)

we get
d

dt
τ(t) = ϕ∗τ(t).

We obtain a linear differential equation, and in particular as τ(0) vanishes (because V
vanishes at x), we get that τ vanishes also around 0, hence τ moves along zeros of V .

2.4 Algebraic groups and their Lie algebras
Throughout the thesis, we will be concerned with actions of linear algebraic groups on
algebraic varieties. This section serves as a reminder of the most important notions and
properties of algebraic groups that we use. We only discuss groups and varieties over C.
The classical source on the topic is Borel’s monograph [19]. A more modern and more
comprehensive overview, with a stronger emphasis on generality is [90]. An older, but
very influential source, especially on the topic of algebraic Lie algebras is the monograph
by Chevalley [37], [38].

2.4.1 General algebraic groups

Definition 2.4.1. An algebraic group G is a scheme of finite type over C with a structure
of a group object in the category of schemes over C. This means that the morphisms
µ : G × G → G (multiplication map), G → G (inverse map) and SpecC → G (neutral
element) are given, which satisfy the standard axioms of associativity, neutral element
and inverse element. The morphisms of algebraic groups are algebraic morphisms that
preserve those structures.

Algebraic groups in positive characteristic might be non-reduced, however as we are
working with groups over C, all the groups are even smooth [90, Corollary 8.39]. Any
algebraic group is separated [90, Proposition 1.22], and therefore as long as it is irreducible,
it is a variety. The connected component of identity is therefore always a variety. The two
most basic groups for us are the multiplicative group Gm and the additive group Ga. On
the level of C-points those are the multiplicative and additive group of C, respectively. As
a scheme Gm = SpecC[t, t−1] and Ga = SpecC[x]. The coaction on the ring level takes t
to t⊗ t and x to x⊗ 1 + 1 ⊗ x. We also denote Gm as C×.
As an important example, generalising C×, we also have the general linear group GLn(C)
of invertible n× n complex matrices. It is an open subscheme of the affine space of all
n× n matrices, defined by non-vanishing of one polynomial, i.e. the determinant. Thence
it is also an affine scheme. In fact, in a sense it is a universal example of an affine algebraic
group.
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Proposition 2.4.2 (Proposition 1.10, [19]). An algebraic group is affine if and only if it
is a closed subgroup of GLn(C) for some positive integer n.

For this reason, we refer to the affine algebraic groups as linear algebraic groups. In
this thesis, we do not consider other algebraic groups. One should however note that by
Chevalley’s structure theorem [90, Theorem 8.26], every connected algebraic group is an
extension of a complete algebraic group by a linear algebraic group. Moreover, a complete
algebraic group is projective [90, Theorem 8.45] and abelian [90, 8.20]. Complete algebraic
groups are also called abelian varieties.

Definition 2.4.3. Any group morphism from an algebraic group G to GLn(C) is called a
representation of G.

As we saw above, any affine algebraic group admits a faithful (i.e. injective) representation.
The group GLn(C) has its standard representation given by the identity GLn(C) →
GLn(C). Any algebraic group admits the adjoint representation, as explained in the next
section.

2.4.2 Lie algebras of algebraic groups
As a complex algebraic group is always smooth, it can be actually viewed as a Lie group.
The classical Lie theory analyses the structure of Lie groups with use of their Lie algebras,
and for algebraic groups, their Lie algebras can also be defined algebraically. The Lie
algebras and their actions will be central to our main results, e.g. Theorem 5.2.11.

Definition 2.4.4. The Lie algebra of an algebraic group G is the vector space g = Lie(G)
of the derivations on G invariant under the left multiplication by any element g ∈ G. The
Lie bracket of vector fields induces the Lie algebra structure on g.

A left-invariant vector field on G is defined uniquely by its value at 1 ∈ G, and this
provides an isomorphism of vector spaces g ≃ T1G.

Although the definition of the Lie algebra agrees with the one known from analysis, the
fundamental theorems of the Lie algebra do not hold in the algebraic category. The
reason for that is that there are much fewer algebraic groups and morphisms between
them than in the Lie group case. The assignment Lie : G ↦→ g = Lie(G) satisfies the
following properties.

1. It is a functor, i.e. a group homomorphism ϕ : G → H induces naturally a morphism
of Lie algebras dϕ : g → h;

2. it maps abelian groups to abelian Lie algebras. Moreover a connected algebraic
group with an abelian Lie algebra is itself abelian (one needs to work in characteristic
0 here [90, 10.35]);

3. if G < H are connected algebraic groups and the corresponding map Lie(G) → Lie(H)
is an isomorphism, then G ≃ H.

However, the following do not agree with classical Lie group theory:
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1. Not every complex Lie algebra is a Lie algebra of an algebraic group. We call a Lie
algebra algebraic if it is a Lie algebra of an algebraic group.

2. Moreover, if H is an algebraic group and g ⊂ h is an algebraic Lie algebra by itself,
its inclusion in h might not come from an inclusion of a subgroup G → H. Consider
as an example an irrational subalgebra in Lie(G2

m).

3. If G and H are algebraic groups and G is simply connected, then a Lie algebra
morphism g → h does not have to lift to a group morphism G → H. Consider for
example G = Ga and H = Gm.

As in the analytic case, we can talk about the adjoint representation of a Lie group and
Lie algebra. Let H be an algebraic group. Then we are given the morphism H × H → H
given by conjugation (g, h) ↦→ (ghg−1). The derivative at (g, 1) is a linear map h × h → h
which vanishes on the first factor. The map h → h on the second factor is called Adg. So
defined Ad : g ↦→ Adg defines a representation of the group H [19, 3.13] on the vector
space h, which we call the adjoint representation. The image of H under Ad : H → GL(h)
is a closed algebraic subgroup and it is called the adjoint group of H. It is the quotient of
H by its centre.

Any representation ρ : G → GL(V ) of an algebraic group defines the corresponding map
dρ : g → gl(V ) = End(V ) on the level of Lie algebras. It is a representation of the Lie
algebra, i.e. for any X, Y ∈ g we have [dρ(X), dρ(Y )] = dρ([X, Y ]), where on the left we
commute operators in End(V ). In particular, this yields the adjoint representation of the
Lie algebra, ad : g → gl(g). It is simply given by adX(Y ) = [X, Y ].

2.4.3 Properties of linear algebraic groups
Here we define and describe the properties of particular classes of linear groups that we
will be using: solvable, unipotent, semisimple and reductive. First, we need to discuss the
Jordan decomposition.

The classical Jordan decomposition for an endomorphism A ∈ Mn×n(C) provides a basis
of Cn in which the matrix is of Jordan form, i.e. A = MJM−1 for M ∈ GLn(C) and J
in Jordan form. Then J is in particular an upper triangular matrix and is a sum of its
diagonal part Js and the nilpotent part Jn, consisting of the entries above the diagonal.
This gives the additive Jordan decomposition of A into semisimple (i.e. diagonalisable) and
nilpotent parts As = MJsM

−1 and An = MJnM
−1 of A. Those are commuting matrices

and they do not depend on the choice of M . In fact, it is the unique pair of commuting
semisimple matrix and nilpotent matrix, which sum up to A [19, Proposition 4.2]. Now if
A is invertible, then As is, and taking Au = In + A−1

s An yields the multiplicative Jordan
decomposition A = AsAu. Here As and Au commute, As is semisimple and Au is unipotent
– the latter is called the unipotent part of A.

Now let G be an arbitrary linear algebraic group. Then we have the following theorem-
definition [19, 4.4].

Theorem 2.4.5. Let g ∈ G and X ∈ g. Then there exist unique gs, gu ∈ G and Xs, Xn ∈ g
such that for any representation ρ : G → GLn(C), ρ(gs) · ρ(gu) is the multiplicative Jordan
decomposition of ρ(g) and dρ(Xs) + dρ(Xn) is the additive Jordan decomposition of
dρ(V ). We also call gs · gu = g and Xs +Xn = X respectively the multiplicative Jordan
decomposition and the additive Jordan decomposition.
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Directly from the properties we get that the notion of Jordan decomposition agrees with
the above for G = GLn(C). Moreover any morphism of algebraic groups ϕ : G → H
preserves both kinds of Jordan decompositions.

We say that an element of the group is semisimple/unipotent if its unipotent/semisimple
part vanishes. Similarly, an element of the Lie algebra is called semisimple/nilpotent if its
nilpotent/semisimple part vanishes. One should note that the Jordan decomposition in
the Lie algebra is not its intrinsic property – it depends heavily on the group. The Lie
algebras of Gr

m and Gr
a are isomorphic (and abelian), but in the former each element is

semisimple, and in the latter each element is nilpotent. By functoriality of the Jordan
decomposition, this provides obstructions to lifting Lie algebra morphisms to Lie group
morphisms. In particular, a Lie algebra of an algebraic subgroup of GLn(C) needs to
contain the semisimple and nilpotent part of any of its elements [37, §14, Proposition
3]. There is a five-dimensional solvable Lie algebra for which it fails, see [22, Chapter 1,
Exercise 5.6], [23, Chapter 7, Exercise 5.1].

Algebraic tori

For any nonnegative integer r, we define the torus of rank r to be an algebraic group
isomorphic to (C×)r. It is by definition an abelian linear group. Equivalently a torus is a
connected algebraic group consisting of semisimple elements. If we choose the isomorphism
with (C×)r, then a rank r torus T can be viewed as the subgroup of diagonal matrices
within GLr(C). In fact, for any representation (C×)r → GLn(C), its image is conjugate
to a subgroup of the diagonal matrices. This means that there is a basis (v1, . . . , vn) of
Cn such that each span(vi) is T-invariant, and the corresponding representations are then
morphisms T → C×, which we call the weights of the representation.

Tori are the basic groups from the point of view of representation theory, but also for
group actions and equivariant cohomology. In the next paragraphs we see the important
role maximal tori play in linear groups in general.

Unipotent and solvable groups

Definition 2.4.6. We call a linear algebraic group unipotent if all of its elements are
unipotent.

A standard example of a unipotent group is the group Un of upper-triangular matrices
within GLn(C). In fact, every unipotent group is a closed subgroup of Un for some n
[19, 4.8]. By definition, a unipotent group does not contain Gm. However, in general it
does contain many copies of Ga. In fact, any element of the Lie algebra integrates to an
additive subgroup:

Theorem 2.4.7 (Proposition 14.32 in [90], Proposition V.3.15 in [38]). Assume that
U is a unipotent group. Then there exists an algebraic exponential isomorphism of
schemes exp : u → U. It is the unique map with the property that for any representation
ρ : U → GLn(C) and any v ∈ u, the matrix ρ(exp(v)) is equal to the exponential
exp(dρ(v)).

Note that the power series for exp(dρ(v)) eventually vanishes, as ρ(v) is nilpotent. More-
over Ga is the “building block” of unipotent groups:
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2. Background material

Theorem 2.4.8 ([90], Proposition 14.21). Every unipotent group admits a central series
whose quotients are isomorphic to Ga.

Now we switch our attention to the solvable groups. An algebraic group is called solvable
if the group of its C-points is solvable. A typical example is the Borel subgroup Bn of
upper-triangular matrices in GLn(C). In fact, by the Lie–Kolchin theorem [19, Corollary
10.5], every solvable group is a closed subgroup of some Bn.

We recall (a part of) the theorem of Borel on solvable groups ([19, Theorem 10.6], see
also [90, Theorem 16.33]) that we will often tacitly use throughout.

Theorem 2.4.9. Let H be a connected solvable group with the Lie algebra h and Hu its
set of unipotent elements. Then

1. Hu is a connected normal closed, unipotent subgroup of H containing [H,H].

2. The maximal tori in H are all conjugate. If T is a maximal torus, then H = Hu ⋊T.
The Lie algebra hn of Hu consists of all nilpotent elements of h.

3. If T is a maximal torus, then any semisimple element of H is conjugate to a unique
element of T.

Remark 2.4.10. Let hn be the set of nilpotent elements of h. It follows from above that
hn is a Lie subalgebra of h. As it consists of nilpotent elements, hence acting nilpotently
by the adjoint action, by Engel’s theorem it is nilpotent itself. Moreover it contains [h, h].
In addition, from the second statement we get that h = hn ⊕ t for t = Lie(T).

Reductive and semisimple groups

Of particular importance for representation theory and equivariant topology are the reduc-
tive groups, which generalise algebraic tori. As mentioned above, any torus representation
splits into a direct sum of one-dimensional representations. A representation of reductive
group also splits into a direct sum of irreducible representations, i.e. representations
without proper nontrivial subrepresentations. Those can however be quite complicated
themselves.

Definition 2.4.11. A linear algebraic group is called linearly reductive if its every
finite-dimensional representation is a direct sum of irreducible representations.

We can also characterise reductivity internally. To this end, we need to define the radical
and the unipotent radical ([90, 6.44 and 6.66]).

Definition 2.4.12. Let G be a connected linear algebraic group. It contains the maximal
connected solvable normal closed subgroup, called the radical of G, as well as the maximal
connected unipotent normal closed subgroup, called the unipotent radical of G. We call
G semisimple if its radical is trivial, and reductive if its unipotent radical is trivial.

Note that any unipotent group is nilpotent and hence solvable, and therefore the unipotent
radical is contained in the radical. Thus semisimplicity is a stronger property than
reductivity.
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As we consider all the groups in characteristic 0, a linear algebraic group is linearly
reductive if and only if its identity component is reductive [90, 22.43]. A reductive group
is semisimple if and only if it has a finite centre. In general, the adjoint group of a
reductive group is always semisimple, and the identity component of the centre is an
algebraic torus [90, Proposition 19.12]. Reductive groups can be also characterised by the
fixed points of their actions on algebraic varieties (see Section 2.5). The standard example
of a reductive group is GLn(C). This is however not a semisimple group, as its centre, and
at the same time radical, consists of all scalar matrices. However, its subgroup SLn(C)
and quotient PGLn(C) are both semisimple. In fact, the latter is the adjoint group of
both GLn(C) and SLn(C).

The semisimple groups are constructed from simple groups. Simply connected simple
groups are then completely classified by their Dynkin diagrams. The classification is out
of scope of this thesis, for more details we refer the reader to [79]. The simple groups, up
to a quotient by finite subgroup, are SLn+1, SO(n), Sp(2n) and five exceptional groups.

We only recall the basic notions of the theory. Let G be a connected reductive group
and T ⊂ G its maximal torus. Then any representation G is also a representation of T,
and such split into direct sums of one-dimensional representations. In particular, that
holds for the adjoint representation of G. As T is commutative, it acts trivially on t, and
in fact t = gT is the fixed point set of the adjoint action of T on t. We therefore get a
decomposition

g = t ⊕
⨁︂
α∈t∗

gα,

where t acts on gα with the weight α. The spaces gα are nonzero only for finitely many
choices of α ∈ t∗, which we call the roots of g. All of those spaces turn out to be
one-dimensional, and moreover α is a root if and only if −α is a root. The roots not only
lie in t∗, but in fact in a discrete lattice Λ = Hom(T,C×). One can then view them as
elements of a real vector space. A sufficiently general functional from that space to R will
then provide an ordering of the roots. This then splits the set of roots Φ into the positive
roots Φ+ and negative roots Φ− such that Φ+ = −Φ−. The subalgebras

b = t ⊕
⨁︂
α∈Φ+

gα, b− = t ⊕
⨁︂
α∈Φ−

gα

of g are solvable subalgebras, and in fact Borel subalgebras (cf. Section 2.4.5). They
integrate to Borel subgroups B and B−, whose unipotent radicals U and U− have the Lie
algebras

u =
⨁︂
α∈Φ+

gα, u− =
⨁︂
α∈Φ−

gα.

A positive root which is not a sum of other positive roots is called a simple root. By
definition, every positive root is a sum of the simple roots, and in fact it is so uniquely, as
the simple roots turn out to be linearly independent. If G is semisimple, they constitute
a basis of t∗.

2.4.4 Levi decomposition
We saw above that the affine and projective groups are building blocks of all algebraic
groups. Reductive and solvable groups play a similar role for linear groups. Indeed, let
H be an arbitrary linear group. The quotient H/Ru(H) of H by its unipotent radical
is clearly reductive. Therefore we see that H is an extension of a reductive group by a
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unipotent group – its unipotent radical. In case H is solvable, the unipotent radical is
just the group of all unipotent elements and then H/Ru(H) can be lifted to a maximal
torus, see Theorem 2.4.9. It turns out that this is not specific to solvable groups.

Theorem 2.4.13 ([93]). Let H be a linear algebraic group and N its unipotent radical.
Then the exact sequence

1 → N → H → H/N → 1
splits, i.e. there is a subgroup L in H which is mapped isomorphically to H/N in the
projection. Therefore H = N ⋊ L for N unipotent and L reductive. The subgroup L is
called a Levi factor. Its choice is not canonical, but any two Levi factors are conjugate.
We can take for L any maximal reductive subgroup of H.

Typical examples of groups which are neither solvable nor reductive are parabolic subgroups
within reductive groups.

2.4.5 Parabolic subgroups and homogeneous spaces
We will now discuss the projective homogeneous spaces of algebraic groups. Those are
defined by parabolic groups.

Definition 2.4.14. A Borel subalgebra of a Lie algebra g is a maximal solvable subalgebra
b. A Borel subgroup of an algebraic group G is a maximal connected closed solvable
subgroup B.

In sln(C), an example of a Borel subalgebra is the subalgebra bn of the upper triangular
matrices. It integrates to the Borel subgroup Bn of upper triangular matrices. In general,
for any reductive group the algebra generated by a maximal torus and positive roots is a
Borel subalgebra.

Proposition 2.4.15. A Lie algebra of a Borel subgroup of G is a Borel subalgebra of
g. Conversely, any Borel subalgebra of a Lie algebra g of an algebraic group G is a Lie
algebra of a Borel subgroup in G. The quotient G/B is projective for any Borel subgroup
B < G. The maximal tori of Borel subgroups of G coincide with the maximal tori of G.

Definition 2.4.16. A closed subgroup P of a connected linear group is called parabolic if
G/P is a projective algebraic variety.

As an easy application of the Lie–Kolchin theorem we have

Proposition 2.4.17. For any Borel subgroup B and a parabolic subgroup P of a semisimple
group G there exists x ∈ G such that

B ⊂ xPx−1.

Corollary 2.4.18. All Borel subgroups are conjugate. A subgroup is parabolic if and only
if it contains a Borel subgroup.

Any Borel subgroup of a group H clearly contains the radical R(H) of H. Hence the
parabolic subgroups of H are in fact determined by the parabolic subgroups in its Levi
factor. Then in reductive groups the parabolic subgroups are determined by subsets of
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simple roots, see e.g. [50, 23.3]. For a reductive group G, the projective homogeneous
spaces G/P for P parabolic are called flag varieties. This reflects the fact that for
G = GLn(C), those parametrise (full or partial) flags in Cn. The conjugacy type of P
determines the dimensions of subspaces making up the flags. The compact homogeneous
spaces will be important examples for us later.

2.5 Group actions and vector fields

2.5.1 Group actions
We say that an algebraic group H acts on a variety X if a map ρ : H ×X → X is given
such that the diagram

H × H ×X H ×X

H ×X X

idH ×ρ

µ×idX

ρ

ρ

commutes. In such a situation, we can pull back the global functions along the action.
Explicitly, for h ∈ H we have the pullback map h∗ : OX → OX , where on any open U ⊂ X,
this maps OX(hU) → OX(U) by composing the functions on hU with the multiplication
map U → hU . As this map is contravariant, i.e. g∗h∗ = (hg)∗, we need to invert to get a
left action on OX . Hence when we talk about the action of H on the global functions, we
mean the action defined by h ↦→ (h−1)∗. This in particular gives a representation of H on
OX(X), and in general on OX(U) for any G-invariant open subset U ⊂ X.
Whenever an algebraic group H acts on a variety X, it yields a Lie algebra homomorphism
ϕ : h → Vect(X) from h = Lie(H) to vector fields on X, see [40]. On any fixed v ∈ h,
this gives the vector field Vv. For any x ∈ X, its value Vv|x at x can be recovered by
considering the derivative at 1H of the map H → X defined as g ↦→ g · x, and evaluating
it on x.
We will call such a homomorphism h → Vect(X) an action of the Lie algebra h on X. We
will want to define the total vector field on h ×X. As it is a local problem on X, we can
restrict to an affine open set U . Then

C[h × U ] = C[h] ⊗C C[U ] (2.1)

and we need to define a derivation on this C-algebra. We can view ϕ|U as an element
of h∗ ⊗C Vect(U). As C[h] = S∗(h∗), we have a multiplication map h∗ ⊗ C[h] → C[h].
Additionally, Vect(U) are by definition the derivations on C[U ], which gives a C-bilinear
Vect(U) ⊗ C[U ] → C[U ]. Those two maps together with (2.1) lead to a C-bilinear map

(h∗ ⊗ Vect(U)) ⊗ C[h × U ] → C[h × U ].

Fixing ϕ|U ∈ (h∗ ⊗ Vect(U)) gives a derivation C[h × U ] → C[h × U ].

Definition 2.5.1. The vector field defined by this derivation will be called the total
vector field of the H-action on X.

Explicitly, let ϕ = ∑︁
ψi ⊗Di for ψi ∈ h∗, Di ∈ Vect(U). Then the defined derivation on

f ⊗ g ∈ C[h] ⊗ C[U ] takes value∑︂
(ψi · f) ⊗Di(g) ∈ C[h] ⊗ C[U ]. (2.2)
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This gives the total vector field on h ×X. One can note that the vector field is tangent
to {y} ×X for any y ∈ h, i.e. as a derivation it preserves the set of functions vanishing
on {y} × X. Indeed, locally such functions are sums of f ⊗ g ∈ C[h] ⊗ C[U ] such that
f(y) = 0, and in such case the image of the derivation (2.2) also vanishes at {y} × X.
The vector field restricted to {y} ×X is precisely ϕ(y) and for any y ∈ h with H acting
on X we will denote this vector field by Vy. Later we will consider restrictions of the total
zero schemes to bigger subsets of h.

As the vector field vanishes in the h direction, it is not only a section of the tangent
bundle, but a section of the pullback π∗

2TX of the tangent bundle of X via the projection
π2 : h ×X → X.

One can also think of vector fields via the total spaces of tangent bundles. If we denote
the total vector bundle of a variety Y by TY , then the action ρ : H × X → X defines
the map Tρ : TH × TX → TX and its restriction to T1H ×X ≃ h ×X gives a section
h × X → TX of the vertical tangent bundle, identical with the vector field on h × X
constructed above.

Lemma 2.5.2. Let an algebraic group H act on a variety X. Then for any g ∈ H,
y ∈ h = Lie(H) and x ∈ X we have

VAdg(y)|gx = Dg(Vy|x).

Proof. Let µ : H × H → H denote the multiplication map and ρ : H ×X → X denote the
action of H on X. Consider the following commutative diagram.

H × H × H ×X

H × H ×X H × H ×X

H ×X H ×X

X

µ×idH × idX

idH × idH ×ρ

µ×idX idH ×ρ

ρ

ρ

.

If we fix a point on the top, it yields an analogous commutative diagram of differential
maps. Take (g, 1, g−1, gx) ∈ H × H × H ×X and (0, y, 0, 0) in its tangent space. Going
through the left branch, it is mapped to VAdg(y)|gx and going through the right one, it is
mapped to Dg(Vy|x).

The next Lemma will be used to show that zeros of generalised Jordan matrices are zeros
of the torus.

Lemma 2.5.3. Let a Lie algebra h act on a smooth variety X. Let d, n ∈ h commute
and assume that the Lie subalgebra generated by [h, h] and n is nilpotent. Let x ∈ X be an
isolated zero of the vector field Vj associated to j = d+ n. Then x is also a simultaneous
zero of Ch(d). In particular, x is a zero of any abelian subalgebra of h containing d.
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Proof. Let k be the Lie subalgebra generated by [h, h] and n. By Lemma 2.3.4 we first
get that x is a zero of d and n, as they commute with j.

We will first prove that x is a zero of C ′(d) = Ch(d) ∩ k. As k is nilpotent by assumption,
its subalgebra C ′(d) is nilpotent as well.

By definition d is in the centre of Ch(d), in particular it commutes with C ′(d). Hence
from Lemma 2.3.4 – for V spanned by d and n – we have that x is a zero of NC′(d)(C · n).
It is therefore an isolated simultaneous zero of d and NC′(d)(C · n) and we can apply the
same argument repeatedly to get that for i = 1, 2, . . . it is a zero of N i

C′(d)(C · n).

The sequence
(︂
N i
C′(d)(C · n)

)︂∞

n=1
has to stabilise at a Lie subalgebra of C ′(d) which is

its own normaliser in C ′(d). As C ′(d) is nilpotent, it then has to be equal to whole
C ′(d), see [22, Proposition 3 in Chapter 1, §4.1]. Therefore d and C ′(d) vanish at x. But
[Ch(d), Ch(d)] ⊂ Ch(d) ∩ [h, h] ⊂ Ch(d) ∩ k = C ′(d), hence C ′(d) is normalised by whole
Ch(d). Therefore by Lemma 2.3.4 the whole Ch(d) vanishes at x.

From Remark 2.4.10 the assumptions about d and n hold whenever h is solvable, [d, n] = 0
and n ∈ hn (as hn is nilpotent and contains [h, h] as well as n).

2.5.2 Fixed point schemes of group actions
Actions of algebraic groups and their fixed points can be quite difficult to study in
full generality. There are however some known results in particular cases. First, the
Lie–Kolchin theorem together with linearisation of the action (Section 2.7) imply the
following.

Theorem 2.5.4 (Borel fixed point theorem). If a solvable group B acts on a complete
nonzero variety X, then its fixed-point scheme XB is nonempty.

We talk about the fixed point scheme, which one defines e.g. by its functor of points [90,
7.B]. However, in the complex case this just means that there is a closed point in X which
is fixed by the whole group B.

Theorem 2.5.5 (Horrocks, [70]). If a unipotent group U acts on a variety X, then its
fixed point scheme XU is connected.

Theorem 2.5.6. Assume that a group G is reductive and acts on a smooth variety X.
Then the fixed-point scheme XG is smooth, in particular reduced.

Remark 2.5.7. For proof see [90, 13.1]. This property is in fact an equivalent characteriza-
tion of the reductive groups among all the complex algebraic groups [47].

In fact, when the group is an algebraic torus, the fixed point schemes provide a lot of
information about the topology of the space. This comes from the Białynicki-Birula
decomposition.

2.5.3 Białynicki-Birula decomposition
The content of this section is based on the two influential papers of Białynicki-Birula
[16, 17]. He proves that the topology, in particular the additive structure of the cohomology
groups can be read from the local data around the fixed point scheme.
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Let the one-dimensional torus T = C× act on a smooth complete variety X. An element
t ∈ C× maps x ∈ X to t · x ∈ X. As we know from Theorem 2.5.6, all the connected
components of XT are smooth varieties. Let us denote them by XT

1 , XT
2 , . . . , XT

k . Then
for i = 1, 2, . . . , k we define the corresponding plus– and minus–cell:

W+
i = {x ∈ X : lim

t→0
t · x ∈ XT

i }, W−
i = {x ∈ X : lim

t→∞
t · x ∈ XT

i }.

Each of those sets comes with the limit map W+
i → XT

i , W−
i → XT

i . As the variety is
projective, for any x there exist limits of t · x in both directions, hence

X =
k⋃︂
i=1

W+
i =

k⋃︂
i=1

W−
i .

We call those the plus- and minus–decomposition. Now for i = 1, 2, . . . , k, let Ni be the
normal bundle of XT

i in X. The action of C× on X descends to an action on Ni, as in
Section 2.7. As the action on XT

i is trivial, every fiber of Ni is a representation of T. As
XT
i is the whole fixed point component, C× does not fix any nontrivial vector in a fiber of

Ni. Thence Ni splits into the positive-weight bundle N+
i and the negative-weight bundle

N−
i .

Theorem 2.5.8. Both W+
i and W+

i are locally closed in X. They are affine fiber bundles
over XT

i and

T (W+
i )|XT

i
≃ T (XT

i ) ⊕N+
i , T (W−

i )|XT
i

≃ T (XT
i ) ⊕N−

i ,

hence N+
i and N−

i are the normal bundles of XT
i in W+

i and W−
i , respectively.

In particular, when the fixed points of T are isolated, the cells are affine spaces, hence
this provides a paving of X into affine spaces. This in particular means that the variety
has a structure of a CW-complex whose cells are all even-dimensional, which then means
that their closures form an additive basis of the homology of X. This is an instance of a
more general statement.

Theorem 2.5.9. Let ν+
i and ν−

i be the ranks of N+
i and N−

i , respectively. Then there
are isomorphisms of graded abelian groups:

H∗(X;Z) =
k⨁︂
i=1

H∗(XT
i ;Z)[−ν+

i ] =
k⨁︂
i=1

H∗(XT
i ;Z)[−ν−

i ].

For a graded abelian group A, by A[n] we mean the abelian group with (A[n])i = An+i.

2.6 Equivariant cohomology and equivariant
formality

The main topological invariant that we study in this thesis is the equivariant cohomology
ring, introduced by Borel in [18]. We recall the most important definitions and properties
here. For a more detailed introduction, we refer the reader to the classical sources
[10, 26, 71].
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2.6.1 Equivariant cohomology
Let us a fix a commutative ring A of cohomology coefficients – most of the time we will
consider A = C and we will mean that when we do not write the coefficients. For any
topological space X we can construct the singular cohomology ring H∗(X,A). Now let G
be a topological group, for example a complex algebraic group, acting on a topological
space X. We can then construct the equivariant cohomology theory. If G acts on X freely,
we would like the equivariant cohomology to be simply the cohomology H∗(X/G,A) of
the quotient space. In general, it will give us rich information about fixed points of the
action.

Definition 2.6.1. If X is a G space we define the G-equivariant cohomology of X to be

H∗
G(X,A) = H∗(EG ×G X,A).

Here EG → BG is the universal G bundle over the classifying space BG. The space
XG = EG ×G X is the mixed quotient, i.e. the quotient of EG ×G X by the diagonal
action of G. The precise convention is usually as follows: G acts on EG on the right,
and for any (x, y) ∈ EG ×X we identify (xt, y) with (x, ty). As the action of G on EG
is free, this diagonal action is free as well. The space EG ×G X is a fiber bundle over
BG, with X as the fiber. Inclusion of the fiber over the basepoint provides a natural
map H∗

G(X,A) → H∗(X,A). This construction is contravariantly functorial under G-
equivariant maps of G-spaces. In particular, the map X → pt provides the bundle map
EG ×G X → BG. On the equivariant cohomology, it induces a ring homomorphism
H∗

G(pt) → H∗
G(X). This means that the equivariant cohomology ring actually has a

natural structure of an algebra over H∗
G(pt). Note also that whenever we have a map of

groups G → H, this gives a natural morphism of cohomology rings H∗
H(X) → H∗

G(X).

It is then essential to know the ring H∗
G(pt) for algebraic groups G. In general, determining

it is a hard problem for integral coefficients [9, 2.5]. However, it turns out to have an
easy description if G is a connected linear group and A is a ring containing Q. First,
assume that G = T ≃ (C×)r is a rank r torus. Then one possible model of the universal
bundle EG → BG is the quotient (S∞)r → (CP∞)r, where each factor of (C×)r acts on
the corresponding factor of (S∞)r. As H∗(CP∞, A) = A[t], we get

H∗
T(pt, A) = H∗

T((CP∞)r, A) = A[t1, t2, . . . , tr].

This identification depends on the choice of the isomorphism T ≃ (C×)r. However, one
can naturally identify

H∗
T(pt,C) = C[t].

Then assume that G is an arbitrary linear group. Let T be its maximal torus and
W = N(T)/T be the Weyl group of G. The normaliser N(T) acts on t by adjoint action
and by commutativity of T its normal subgroup T acts trivially, hence W has a well
defined action on t. Then H∗

G(pt) ≃ C[t]W and the canonical map H∗
G(pt) → H∗

T(pt)
coming from the inclusion T → G is simply the inclusion C[t] → C[t]W.
Example 2.6.2. Let G = GLn(C). Then there is a maximal torus T ⊂ G consisting of
all the diagonal matrices. It is of rank n and hence H∗

T(pt) = C[η1, η2, . . . , ηn], where ηi
is the functional which maps a diagonal matrix to its (i, i) entry. The normaliser N(T)
equals T · P, where P is the group of permutation matrices. Hence the action of W on t∗
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permutes η1, η2, . . . , ηn. Therefore H∗
G(pt) = C[t]Σn = C[e1, e2, . . . , en], where ei is the

i-th elementary symmetric polynomial in the variables η1, η2, . . . , ηn.

We will see in Section 3.3 that H∗
G(pt) is actually isomorphic to a polynomial ring, for

any connected linear group G. By Chevalley’s restriction theorem for G semisimple [39,
Theorem 3.1.38] this ring is also equal to the ring of G-invariant functions C[g]G on g.
Below, in Lemma 3.3.16 we prove that this is the case for a wider class of linear groups.

In fact, a similar statement is true for any space X [71, Chapter III, Proposition 1].

Theorem 2.6.3. Let G be a fixed algebraic group, T a maximal torus and W the
corresponding Weyl group. Then W acts naturally on H∗

T(X) for all topological spaces X
and

H∗
G(X) = H∗

N(T)(X) = H∗
T(X)W.

Throughout the thesis we will also use the notation H∗
G for H∗

G(pt).

2.6.2 Equivariant formality
As we mentioned before, if we fix an algebraic group G, there is a natural map H∗

G(X) →
H∗(X). However, in general there is no way to determine one of those rings from the
other. We are however provided with the Serre spectral sequence [80, Section 2.2]. As
XG is a fiber bundle over BG with a fiber X, it has the form

Ep,q
2 = Hp(BG, Hq(X)) =⇒ Hp+q

G (X).

Let G = T be an algebraic torus. Then we call a space X with an action of T equivariantly
formal [54] if this spectral sequence collapses on E2. Equivariant formality is in a sense
the opposite of the action being free. For a free action, we have H∗

T(X) = H∗(X/T) and
if X is a sufficiently nice, finite dimensional space, this is a finite-dimensional vector
space over C. However, if the action is equivariantly formal and X is nonempty, then
its equivariant cohomology is infinite-dimensional. Let I ⊂ H∗

T be the maximal ideal
generated by the elements of positive degree – so that H∗

T/I ≃ C.

Theorem 2.6.4 ([54]). Any space whose odd cohomology vanishes is equivariantly formal.
If X is equivariantly formal, then

H∗
T(X) ∼= H∗

T(pt) ⊗H∗(X) (2.3)

as H∗
T(pt)-modules and H∗(X) ∼= H∗

T(X)/IH∗
T(X) as C-algebras.

In fact, any smooth complex complete variety under the action of a linear algebraic group
is equivariantly formal [110, Theorem 1]. The above theorem means that the equivariant
cohomology ring of an equivariantly formal space X carries within it the information
about the non-equivariant cohomology.
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2.6.3 Localisation and GKM spaces
A part of the importance of equivariant cohomology comes from the power of localisation
to the fixed points. This was pioneered in the influential paper of Atiyah and Bott [10].
For simplicity, let us consider an algebraic (or compact) torus T acting on a topological
space X. The inclusion of the fixed-point set XT → X induces the localisation map on
equivariant cohomology

H∗
T(X) → H∗

T(XT) = H∗(X) ⊗C H
∗
T.

In [10] it is proved that if X is a compact manifold, then one can recover the class in
H∗

T(X) from its localisation to H∗
T, and in particular compute its integral in H∗

T easily.
This is of a particular use when H∗

T is a discrete set, as then H∗
T(XT) is just a product of

polynomial rings.

In fact, in [54, Theorem 1.6.2] a more general statement is proven.

Theorem 2.6.5. If X is an equivariantly formal space with an action of a torus T, then
the restriction map H∗

T(X) → H∗
T(XT) is injective.

The cokernel of the localisation map is also identified in terms of 0- and 1-dimensional
orbits of X. In general, it is hard to compute, but in a particular case of GKM spaces
there is an easy combinatorial description.

Definition 2.6.6. A projective algebraic variety with an action of an algebraic torus
T is called a GKM space if the action has finitely many fixed points and finitely many
1-dimensional orbits.

Theorem 2.6.7 (Goresky–Kottwitz–MacPherson, [54], 1.2.2). Assume that a torus T
acts on a smooth GKM space X. Denote the T-fixed points by ζ1, ζ2, . . . , ζs and the
one-dimensional orbits by E1, E2, . . . , Eℓ. The closure of any Ei is an embedding of P1

and contains two fixed points ζi0 and ζi∞, which for any x ∈ Ei are equal to the limits
limt→0 tx and limt→∞ tx. The action of T on Ei has a kernel of codimension 1, which is
uniquely determined by its Lie algebra ki.

Then the restriction H∗
T(X,C) → H∗

T(XT ,C) ∼= C[t]s is injective and its image is

H =
{︄

(f1, f2, . . . , fs) ∈ C[t]s
⃓⃓⃓⃓
⃓ fi0|ki

= fi∞ |ki
for i = 1, 2, . . . , ℓ

}︄
.

The assumptions are satisfied for many classical varieties one encounters in algebraic
geometry.
Example 2.6.8. Let X be a smooth projective toric variety [48]. Then an algebraic torus
T acts on X with a dense open orbit, and there is finitely many orbits of T in X. In
particular, this means that X is a GKM space. The variety is fully described by its
fan, which partitions into cones the real vector space MR = Hom(T,C×) ⊗Z R spanned
by the characters of T. The top-dimensional cones correspond to fixed points, and the
1-dimensional orbits correspond to codimension 1 fans. From the description above it
follows that H∗

T(X,C) can be identified with the (complex) piecewise polynomial functions
on the fan; for details see [25, section 2.2].
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Example 2.6.9. For any linear algebraic group G, its projective homogeneous spaces G/P
are all GKM spaces. A description of the GKM data can be found in [58]. The equivariant
cohomology of the homogeneous spaces can be however also computed differently. Indeed,
we have

(G/P)G = EG ×G (G/P) = (EG × G)/(G × P)

where G acts diagonally with the left translation action on G, and P acts on G on the
right. We can quotient first by G and then we are left with EG with the right action of
P. As EG can be viewed as a model for EP, we get (G/P)G ≃ BP, hence

H∗
G(G/P) = H∗

P.

The structure of H∗
G-algebra on the right comes simply from the quotient map BP ≃

EG/P → EG/G ≃ BG, hence on the algebra level it is an inclusion C[t]W → C[t]WP .
Therefore abstractly the equivariant cohomology is just an affine space, but it has a
nontrivial structure of an algebra over another polynomial ring, the equivariant cohomology
of the point.

If G = GLn, there is a very elegant description of the equivariant cohomology of G/P in
terms of generators and relations [9, Corollary 5.4]. Such a flag variety, depending on
the choice of P, parametrises the flags 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk ⊂ Vk+1 ⊂ Cn, where
dim Vj = ij for some fixed subsequence (i1, i2, . . . , ik) of (1, 2, . . . , n − 1). The algebra
H∗

G(G/P) over C[e1, e2, . . . , en] is generated by the Chern classes of the quotient bundles
with fibers Vj/Vj−1 (see Example 2.7.10). If for simplicity we denote dj = ij − ij−1, then
this gives Chern classes cj1, . . . , cjdj

for j = 1, 2, . . . , k + 1. The relations are the ones
coming from comparing both sides of the polynomial equation

k+1∏︂
j=1

(1 + cj1x+ cj2x
2 + · · · + cjdj

xdj ) = 1 + e1x+ e2x
2 + . . . enx

n.

Remark 2.6.10. It is worth mentioning another, modern approach to equivariant cohomol-
ogy, which involves quotient stacks, i.e. we take H∗

G(X) = H∗[X/G]. We do not use this
approach in this thesis at all. An interested reader is referred to [13] for details.

Another classical definition of equivariant cohomology, if X is a G-manifold, is the
equivariant de Rham complex. This is analogous to de Rham construction of ordinary
cohomology. A detailed construction can be found in the classical monograph [59].

2.7 Linearised vector bundles and linearisation of
the action

2.7.1 Equivariant sheaves and bundles
Once an algebraic group G acts on an algebraic variety X, we can define a notion of a
G-linearised, or equivariant, vector bundle on X, and more generally of a G-equivariant
coherent sheaf [89, 2.2.1]. Recall that a vector bundle on X is a locally free sheaf of
OX-modules.

Definition 2.7.1. Let E be a coherent sheaf on X. Consider two maps ρ, π2 : G×X → X
being the action of G and the projection on the second factor, respectively.
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We say that E is a G-equivariant sheaf, or shortly a G-sheaf, if we are given an isomorphism
ϕ of OG×X-modules

ϕ : π∗
2E → ρ∗E ,

for which the following agreement of maps of OG×G×X-modules holds:

(µ× idX)∗ϕ = (idG ×ρ)∗ϕ ◦ π∗
23ϕ.

Here µ : G × G → G is the multiplication, π23 : G × G ×X → G ×X is the projection to
the product of the second and the third factor.

Remark 2.7.2. In case E is a G-equivariant vector bundle, we also call it G-linearised. For
a vector bundle, one can equivalently work with the total space E and require that G acts
on E so that the projection map E → X is equivariant, and for any g ∈ G and x ∈ X
the corresponding map on the fibers Ex → Egx is linear [27, 3.2].

If E is a vector bundle, one should think of ϕ in the following way. The sheaf π∗
2E is a

locally free sheaf on G × X, whose fiber over (g, x) is Ex. The sheaf ρ∗E has Egx as a
fiber over (g, x). The isomorphism ϕ gives then an isomorphism Ex → Egx on the fibers,
depending in an algebraic way on g and x. The condition from the definition ensures that
this gives an action of G on the total space, i.e. for any (g, h, x) ∈ G × G ×X the action
of gh on Ex yields the same map as the composite of the action h on Ex and of g on Ehx.

Note that if X is a point, then the G-linearised bundles over X are precisely the represen-
tations of X. For any smooth G-variety, its tangent bundle has the canonical structure
of a G-bundle. The map ϕ on the fibers is defined via the differential of the action of ϕ.
A direct sum, a tensor product of G-bundles and an exterior or symmetric power of a
G-bundle is a G-bundle, and so is the quotient of a G-bundle by its subbundle which is
also a G-bundle. This means that if Y ⊂ X is an inclusion of smooth G-varieties, then
the normal bundle of Y is a G-vector bundle on Y .

2.7.2 Linearisation of the action
Assume that a G-linearised vector bundle E on a G-variety X is very ample. On the space
of global sections V = Γ(X, E) we have the representation ρ : G → GL(V ). Then E being
very ample implies that the map X → P(V ∗) is a G-invariant embedding. Therefore we
are able to embed X in a projective space with a linear action of G. It turns out one can
always find a suitable vector bundle under mild assumptions [45, Theorem 7.3].

Theorem 2.7.3. Assume that X is a quasi-projective normal algebraic variety and a
connected algebraic group G acts on X. Then there exists a G-equivariant embedding
X ↪→ Pn for some integer n, where G acts on Pn by a linear representation G → GLn+1.

2.7.3 Equivariant K-theory
Let G be a linear group and let X be a G-variety. One can then define the equivariant
algebraic K-theory groups of X, i.e. KG

i (X), defined by the G-sheaves, and Ki
G(X),

defined by the G-linearised vector bundles. In this thesis we are only concerned with K0

and K0. A reader interested in higher K-theory might want to consult sources like [89],
[105].
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Definition 2.7.4. We define the equivariant K-theory of coherent sheaves KG
0 (X) as the

Grothendieck group of the abelian category of coherent G-sheaves on X. Similarly, we
define the equivariant K-theory of vector bundles K0

G(X) as the Grothendieck group of
the exact category of G-linearised vector bundles on X.

We recall that the Grothendieck group K(C) of an exact category C is the free abelian
group generated by the objects of C, divided by the subgroup generated by the expressions
[A] − [B] + [C] for all short exact sequences 0 → A → B → C → 0.

Note that K0
G(X) is a contravariant functor on the category on G-varieties. Any G-

equivariant morphism X → Y gives rise to the pullback map between the categories of
G-linearised vector bundles. This gives a ring morphism K0

G(Y ) → K0
G(X), where the

ring structure is given by the tensor product of the vector bundles. In particular, for any
G-variety X, the ring K0

G(X) is an algebra over K0
G(pt), which is the representation ring

R(G) of the group G [50, 23.2]. Note also that if X is an H-variety and we are given a
morphism of algebraic groups G → H, this makes X into a G-variety and yields a ring
morphism K0

H(X) → K0
G(X). In particular, for G being trivial, it gives the restriction

map K0
H(X) → K0(X) to ordinary K-theory.

Example 2.7.5. If we take G = C×, the representation ring is Z[t, t−1], where t corresponds
to one-dimensional representation of the weight 1. Now consider the standard C× action
on P1, i.e. t · [x, y] = [tx, y]. Then KC×

0 (P1) = K0
C×(P1) = Z[t, t−1][x]/(x−1)(x− t), where

x is the class of the tautological bundle. This is a special case of the projective bundle
theorem for equivariant K-theory, [105, Theorem 3.1].
Example 2.7.6. For any reductive group G and a parabolic subgroup P we have

KG
0 (G/P) = K0

G(G/P) = R(P) = R(L),

where L is a Levi subgroup of R(L).

In fact, the equality of K0 and K0 is not an accident in those cases, and this follows from
a general theorem [105, Corollary 5.8(5)].

Theorem 2.7.7. Let G be a linear group acting on a smooth variety X. Then the
inclusion of the category of vector bundles in the category of coherent sheaves yields the
isomorphism K0

G(X) → KG
0 (X).

Moreover, if X is a smooth projective variety, then the torus-equivariant K-theory turns
out to contain almost all the information about potential equivariant K-theory rings.

Theorem 2.7.8. [62, Corollary 6.7] Assume that G is a connected reductive group, T ⊂ G
is its maximal torus and let X be a smooth projective G-variety. Then the Weyl group W
of G acts on K0

T(X), and the canonical map K0
G(X) → K0

T(X) yields the isomorphism
K0

G(X) ≃ K0
T(X)W.

Theorem 2.7.9. Assume that a complex linear algebraic group H is acting on a complex
variety X. Let L ⊂ H be a Levi subgroup of H. Then the restriction map

K0
H(X) → K0

L(X)

is an isomorphism.
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Proof. By [105, 6.2], the restriction along X → H ×L X induces an isomorphism

K0
H(H ×L X) → K0

L(X).

Now H ×L X maps H-equivariantly to X (simply by [(h, x)] ↦→ hx) and we will show that
this map induces an isomorphism on K0

H. Let N be the unipotent radical of H, so that
H = N ⋊ L. Then we have the H-equivariant isomorphism

H ×L X ≃ N ×X,

where H acts on N ×X diagonally by conjugation and action.

Indeed, every element of H is uniquely decomposed as ul for u ∈ N, l ∈ L. This means
that H ×L X ≃ N ×X. Now we need to see how the H acts on this product. Note that in
H ×L X we have

h · [(u, x)] = [(hu, x)] = [(huh−1, hx)],

and as huh−1 ∈ N, upon identification with N ×X we have h · (u, x) = (huh−1, hx).

We want to prove that the map H ×L X → X induces an isomorphism on K0
H. But we

have proved that in fact it is a map N ×X → X. Note that it is not the projection, but
the action of N on X. However, we can split it into the isomorphism N ×X → N ×X
given by (u, x) ↦→ (u, ux), and the projection. Note that this isomorphism is in fact
H-invariant, as

h · (u, ux) = (huh−1, hux) = (huh−1, huh−1hx).

Therefore we have to show that the projection N ×X → X yields an isomorphism on K0
H.

Now note that by Theorem 2.4.7 the exponential map exp : n → N is an isomorphism
of schemes, so in fact N × X ≃ n × X has a structure of a (trivial) vector bundle over
X. Note that H acts on it linearly. Indeed, we have h exp(v)h−1 = exp(hvh−1) and the
adjoint representation of H on n is linear. Then by [105, 4.1] the projection N ×X → X
gives an isomorphism on K0

H. 1

2.7.4 Equivariant Chern classes
We assume the reader is familiar with the classical theory of characteristic classes, in
particular Chern classes, as described e.g. in the classical book [92]. We want to sketch
the equivariant part of the story here. We only work with algebraic equivariant vector
bundles, as introduced earlier in this section – however the Chern classes in cohomology
can be equally well defined for topological bundles. This means that in fact we study the
composition

K0
H(X)alg → K0

H(X)top → H∗
H(X).

One can consider the Chern classes purely algebraically and see them in the Chow ring of
the variety X. However, here we only discuss the Chern classes in equivariant cohomology.
Let E be a G-linearised rank n vector bundle on a G-variety X with the total space E.
As G acts on E and the projection E → X is G-equivariant, this gives a continuous map
EG → XG, which in fact is also a rank n (complex) vector bundle. Then we can consider
its Chern classes in H∗(XG) = H∗

G(X), we use the notation cG
i (E) = ci(EG) and we call

1The author would like to thank Andrzej Weber for the idea of this proof.
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these classes the equivariant Chern classes of the bundle E . Their sum cG(E) = ∑︁∞
i=0 c

G
i (E)

is the total equivariant Chern class of E .

Straight from the definition we see that the equivariant Chern classes satisfy the conditions
analogous to those for ordinary Chern classes:

1. If E is of rank n, then cG
i (E) vanishes for i > n. Moreover cG

0 (E) = 1 for any
G-linearised bundle E . For any i ≥ 0 we have cG

i (E) ∈ H2i
G (E);

2. If f : X → Y is a G-equivariant map of G-varieties and E is a G-linearised vector
bundle on Y , then

cG(f ∗E) = f ∗cG(E).
On the left hand-side f ∗E means the pullback of E to Y along f , and on the right
f ∗ is the pullback map on equivariant cohomology;

3. If
0 → E → F → G → 0

is an exact sequence of G-linearised vector bundles on a G-variety X, then

cG(F) = cG(E) · cG(G).

Moreover, for any G-linearised vector bundle E on X, its ordinary Chern classes ci ∈
H∗(X,C) are the restrictions of the equivariant ones under the canonical map H∗

G(X,C) →
H∗(X,C).
Example 2.7.10. Let G = GLn. Consider X = G/P, a flag variety of flags of type
(i1, i2, . . . , ik) in Cn. The trivial rank n bundle F ≃ X × Cn on X, with the standard
representation of GLn on Cn, has a sequence of G-equivariant subbundles E0 ↪→ E1 ↪→
E2 ↪→ · · · ↪→ Ek ↪→ Ek+1, with Ej of rank ij (we let i0 = 0). A fiber of Ej over the flag
0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk ⊂ Vk+1 = Cn is the vector space Vj.

As in Example 2.6.9, we denote by cj1, . . . , c
j
dj

the Chern classes of Ej/Ej−1. By the
properties described above, we have

k+1∏︂
j=1

(1 + cj1 + cj2 + · · · + cjdj
) = c(F).

One then checks that c(F) = 1 + e1 + e2 + . . . en and this means that the Chern classes
satisfy the relation from Example 2.6.9.

Now that we have defined equivariant Chern classes, we can also define the Chern
characters in the same way as for ordinary Chern classes [68, §10]. In other words,
the Chern character of a G-linearised vector bundle E of rank n is equal to the formal
sum chG(E) = ∑︁n

i=1 exp(γi), where γi ∈ H2
G(X) are the Chern roots of E so that c(E) =∏︁n

i=1(1+γi). For each i, the 2i-th degree component chG
i (E) is in fact a polynomial in cG

1 (E),
cG

2 (E), . . . , cG
i (E), dependent only on i and n (not on E). One has to be careful, as the

equivariant cohomology is usually nontrivial in arbitrarily high degrees; therefore chG(E)
does not lie in H∗

G(X) = ⨁︁∞
i=0 H

i
G(X), but in the completion Ĥ

∗
G(X) = ∏︁∞

i=0 H
i
G(X).

Note also that in this step it is crucial that the cohomology coefficients contain Q.

So defined equivariant Chern character satisfies the following conditions:
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• If 0 → E → F → G → 0 is an exact sequence of G-linearised vector bundles, then
chG(F) = chG(E) + chG(G);

• For any two G-linearised vector bundles E , F , we have chG(E ⊗G) = chG(E) ·chG(G).

Therefore, the Chern character is in fact a ring homomorphism

chG : K0
G(X) → Ĥ

∗
G(X).

If X is smooth, then by Theorem 2.7.7 K0
G(X) ≃ KG

0 (X), which means we have a well-
defined Chern character for any coherent G-sheaf. Going backwards, we can produce this
way the Chern classes of any sheaf. To make sure that they terminate, one can resolve
the sheaf by vector bundles, and then its Chern classes must come from an alternating
product of the Chern classes for the resolving bundles. By Theorem 2.7.7, the result will
not depend on the choice of the resolution.

2.8 Graded Nakayama lemma
For the sake of completeness we provide here the proof of the version of the graded
Nakayama Lemma that we will need (see also [46, Corollary 4.8, Exercise 4.6]).

Let R be a Z≥0-graded ring R = ⨁︁
n≥0 Rn and I = ⨁︁

n>0 Rn the ideal generated by
elements of positive degree.

Lemma 2.8.1. If a Z≥0-graded R-module M satisfies M = IM , then M = 0.

Proof. Suppose on contrary that a ∈ M is a nonzero homogeneous element of minimal
degree d ∈ Z≥0 present in M . By assumption M = IM we have that

a =
k∑︂
i=1

riai

for some ri ∈ I, ai ∈ M . But as ri ∈ I, the minimal degree present in ri is at least 1. As
ai ∈ M , the minimal degree present in ai is at least d. Therefore the elements riai have
zero part in degrees less than d+ 1. In particular, we cannot get a as a sum of them, as
it has nonzero part in degree d.

Corollary 2.8.2. Let M be a Z≥0-graded R-module M . Suppose that elements (aj)j∈J of
M generate the R/I-module M/IM . Then they generate M as R-module.

Proof. Let us consider the map of R-modules ϕ : RJ → M defined by the elements aj.
We have the exact sequence

RJ ϕ−→ M → cokerϕ → 0.

As tensor product is right exact, by tensoring with R/I we get an exact sequence of
R/I-modules:

(R/I)J → M/IM → (cokerϕ) ⊗R R/I → 0.
By assumption the first map is an epimorphism, hence (cokerϕ) ⊗R R/I = 0. In other
words, cokerϕ satisfies the conditions of lemma. Therefore cokerϕ = 0, hence ϕ is
surjective.
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CHAPTER 3
Regular elements and Kostant

sections

As we mentioned in Section 2.6.1, for a connected linear group G all the equivariant
cohomology rings H∗

G(X) are algebras over the coordinate ring H∗
G ≃ C[t]W, where t is

the Lie algebra of a maximal torus T ⊂ G and W = N(T)/T is the corresponding Weyl
group. We also refer to Chevalley’s restriction theorem which claims that the restriction
C[g]G → C[t]W is an isomorphism. The ring H∗

G turns out to always be a polynomial
ring. Moreover, Kostant shows in [82] that one can explicitly define an affine space S ⊂ g
such that the restriction C[g]G → C[S] is an isomorphism. The space S is referred to as
the Kostant section. On the level of spectra, this means that the map S → g//G is an
isomorphism. In particular, every conjugacy orbit in g corresponds to some element in
S. However, in the GIT quotient g//G some of the conjugacy orbits get identified, and
one cannot expect an arbitrary orbit to contain an element of S. It is however true if we
restrict to regular orbits, i.e. to elements with the minimal possible centraliser. In case of
G = GLn+1, this means that all the eigenspaces are 1-dimensional, and hence equivalently
the corresponding vector field on Pn has finitely many zeros.

In this section, we recall the notion of regular elements and the results of Kostant. We
generalise them to a wider class of principally paired groups which contains all the
parabolic subgroups of reductive groups. We conclude the chapter by defining regular
actions and showing how the regular elements behave in such a setting.

3.1 Regular elements
Let H be an algebraic group and T ⊂ H be a maximal torus, of dimension r. We will
call an element v ∈ h = Lie(H) regular if dimCh(v) = r. This is stronger than the usual
notion of a regular element in the literature (see e.g. [38]) – an element whose centraliser
has minimal possible dimension. All the centralisers have dimension not smaller than r,
but it is possible that no regular element exists. For example for H = Gm × Ga – the
product of the multiplicative and the additive group – all centralisers are 2-dimensional,
but the maximal torus is of dimension 1.

Nilpotent regular elements are also sometimes refered to as principal nilpotents.
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3. Regular elements and Kostant sections

Example 3.1.1. For H = GLn(C) or H = SLn(C), a regular element of h is a matrix with
all eigenspaces of dimension 1. For example, among the following matrices in gl4(C), the
first two are regular, the third is not:⎛⎜⎜⎜⎝

2 0 0 0
0 1 0 0
0 0 3 0
0 0 0 7

⎞⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎝

0 0 0 0
0 2 0 0
0 0 1 0
0 0 1 1

⎞⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎝

0 1 0 0
0 0 2 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ .
Example 3.1.2. More generally any reductive group G contains regular elements in its
Lie algebra, in particular a regular nilpotent element. Indeed, once we choose a maximal
torus T ⊂ G and positive roots, we can take e = x1 + x2 + · · · + xs, where x1, x2, . . . , xs
are the root vectors of g corresponding to the positive simple roots (s = r − dimZ(G)).
Then e is a regular nilpotent in G (see [82, Section 4, Theorem 4]).

The condition dimCh(w) > r is a Zariski-closed condition on w – as it means that [w,−]
has sufficiently small rank, which amounts to vanishing of some minors of a matrix.
Therefore, if H admits a regular element in its Lie algebra, the subset of regular elements
hreg ⊂ h is open and dense.

Note that if H is solvable, then by Theorem 2.4.9 we have [h, h] ⊂ hn. This means that
for any v ∈ h we have [v, h] ⊂ hn. As the codimension of hn is exactly r = dim T, the
dimension of maximal torus, v being regular is equivalent to [v, h] = hn.

Note also that if H′ ⊂ H is a subgroup which contains a maximal torus T of H, then
any regular v ∈ h contained in h′ is also regular in h′. This means in particular that the
centraliser Ch(v) is contained in h′.

3.2 sl2-triples and b(sl2)-pairs
The classical version of Carrell–Lieberman theorem [36, Main Theorem and Remark 2.7]
deals with an arbitrary vector field V on a smooth projective variety X, which vanishes
in a discrete, nonempty set. They prove the following

Theorem 3.2.1. Let X be a smooth projective complex variety and V a vector field with
finitely many zeros and denote its zero scheme by Z. Then there exists an increasing
filtration F• on C[Z] such that

H∗(X) ≃ GrF (C[Z]).

The degree on the left is multiplied by two, in particular X only has even cohomology.

The theorem therefore gives some information on cohomology, but this depends on
determining the filtration F•. This can be hard in general. Only if V comes with a C×-
action which satisfies t∗(V ) = tkV for some nonzero integer k, we get H∗(X) ∼= C[Z(V )]
([7], [4, Theorem 1.1]). We sketch the details in Section 4.2. In our situation, we will
consider the vector fields as coming from an action of a Lie group. Hence the following
definition.

Definition 3.2.2. For any complex Lie algebra h, by b(sl2)-pair in h we mean a pair
(e, h) of elements of h that satisfy the condition [h, e] = 2e. By sl2-triple in h we mean a
triple (e, f, h) of elements of h such that [h, e] = 2e, [h, f ] = −2f , [e, f ] = h.
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If G is a semisimple group, then by the Jacobson–Morozov theorem (see e.g. [39, Theorem
3.7.1]) for any nilpotent element e ∈ g there exists an sl2-triple (e, f, h) in g such that f
is nilpotent and h is semisimple. The same is then true for any reductive Lie group G, as
a reductive Lie algebra is a direct sum of its centre and a semisimple ideal ([77, Theorem
II.11]).

Let us consider the connected subgroup K ⊂ G whose Lie algebra k is the smallest
one which contains e, f , h (see [19, 7.1]). Then the Lie algebra of [K,K] is equal
to [k, k] (see [19, Proposition 7.8]). However, by [19, Corollary 7.9] we have [k, k] =
[span(e, f, h), span(e, f, h)] = span(e, f, h). Hence we get an algebraic subgroup [K,K]
(contained in K, hence equal to K) of G whose Lie algebra is span(e, f, h). As its Lie
algebra is semisimple, the group itself is semisimple. By [90, Theorem 20.33], if it is
nontrivial, it has to be either SL2(C) or PSL2(C). In either case, there is a covering map

ϕ : SL2(C) → K. (3.1)

As any automorphism of sl2(C) lifts to an automorphism of SL2(C), we can assume that
the canonical basis e0, f0, f0 of sl2 maps to e, f , h, respectively. Hence we get the
following.

Proposition 3.2.3. For any nilpotent element e in the Lie algebra g of an algebraic
reductive group, there exists an sl2-triple (e, f, h) within g with f nilpotent and h semisim-
ple. If e ̸= 0, the element h integrates to a map C× → G with discrete kernel, whose
differential is h.

Remark 3.2.4. As we saw in Example 3.1.2, if G is reductive, then there exists a principal
nilpotent e ∈ g. By the proposition, this means that there is a an sl2 triple (e, f, h) with e
principal nilpotent, f nilpotent and h semisimple. By the general theory of representations
of sl2, the ranks of the operators [e,−] and [f,−] are equal, hence f is also regular. This
motivates the following definition.

Definition 3.2.5. An sl2-triple (e, f, h) will be called principal if e and f are regular
nilpotents.

Definition 3.2.6. For a linear algebraic group H, an integrable b(sl2)-pair in h = Lie(H)
is a b(sl2)-pair (e, h) in h which consists of a nilpotent element e and a semisimple element
h which is tangent to some one-parameter subgroup H : C× → H, i.e. h = dH(1). This
means that (e, h) comes from an algebraic group morphism B2 = B(SL2) → H. We call
an integrable b(sl2)-pair principal if e is a regular element of h.

Remark 3.2.7. Note that, unlike an sl2-triple, a b(sl2)-pair does not have to be integrable.
As an easy counterexample, we may take

h =

⎛⎜⎝π 0 0
0 π − 2 0
0 0 2 − 2π

⎞⎟⎠ , e =

⎛⎜⎝0 1 0
0 0 0
0 0 0

⎞⎟⎠
for H = SL3(C). Then [h, e] = 2e, but h is not tangent to a one-dimensional torus (we
can replace π with any irrational number).

Definition 3.2.8. We call a connected linear algebraic group H principally paired if it
contains a principal integrable b(sl2)-pair.
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For example a reductive group is principally paired because of Proposition 3.2.3. More
generally we have the following

Lemma 3.2.9. Let G be a reductive group. Then any parabolic subgroup P ⊂ G is
principally paired.

Proof. Because there is a Borel subgroup B ⊂ P, it is enough to prove the result for
B = P. Note that if B = B2 is the Borel subgroup of SL2(C), then the image ϕ(B2) of B2
in the map (3.1) is a solvable connected subgroup of G, hence it is contained in a Borel
subgroup of G. All Borel subgroups of G are conjugate by Corollary 2.4.18, hence they
are all principally paired.

3.3 Kostant section and generalisations
The seminal work of Kostant shows the following theorem ([82, Theorem 0.10]).

Theorem 3.3.1. Assume that G is a reductive group and (e, f, h) is a principal sl2-
triple. Then every regular element of g = Lie(G) is conjugate to exactly one element of
S = e+ Cg(f). Moreover, the restriction C[g]G → C[S] is an isomorphism.

The affine plane S is called the Kostant section. We will provide in Theorems 3.3.15 and
3.3.17 a version that works for arbitrary principally paired groups.

3.3.1 Solvable groups
Assume first that H is a solvable group. Let T be its maximal torus and hn be the
nilpotent part of h = Lie(H). Assume that e ∈ hn, h ∈ t are such that (e, h) is a principal
integrable b(sl2)-pair. Let {H t}t∈C× be the one-parameter subgroup in H to which h ∈ h
integrates. Recall from Remark 2.4.10 that h = t ⊕ hn.

Lemma 3.3.2. All elements of e+ t are regular and not conjugate to one another.

Proof. Assume that for some v ∈ t the element e + v is not regular. This means that
dimCh(v) ≥ r + 1. As AdHt(e+ v) = t2e+ v, for any t ∈ C× we have

dimCh

(︂
e+ v/t2

)︂
= dimCh

(︂
t2e+ v

)︂
= dimCh(e+ v) ≥ r + 1.

As the set of nonregular elements is closed in h, we get dimCh(e) ≥ r+1. This contradicts
the regularity assumption.

For any x ∈ h and M ∈ H we have AdM(x) − x ∈ [h, h] ⊂ hn by [19, Propositions 3.17,
7.8]. Therefore no two distinct elements from e+ t can be conjugate to one another, as
they differ on the t component.

Lemma 3.3.3. 1 Every regular element of h is conjugate to a unique element of e+ t.
1This is based on an argument provided by Anne Moreau.
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Proof. We know that h = t ⊕ hn. Assume that x = v + n, where v ∈ t and n ∈ hn, is
regular. This means that [x, h] = hn (see Section 3.1). Let us consider the map

Ad−(x) : H → h. (3.2)

As in the proof of the previous lemma, we see that the image is actually contained in
v + hn.

Note that the image of the derivative of (3.2) at 1 is [x, h] = hn = Tx(v + hn). Therefore
by [102, Theorem 4.3.6] the morphism Ad−(x) : H → v + hn is dominant. Analogously,
the morphism Ad−(e+ v) : H → v + hn is dominant, as e+ v is regular from the previous
lemma. Therefore the images of Ad−(x) and Ad−(e+v) are both dense in v+hn. By [102,
Theorem 1.9.5] they both contain open dense subsets of v + hn and hence they intersect,
which means that x and e+ v are conjugate.

Uniqueness follows from the previous lemma.

Now we will also provide an equivalent of the classical Jordan form, for arbitrary solvable
groups. Recall that by Remark 2.4.10 every x ∈ h is of the form x = w + n, where w ∈ t
and n ∈ hn.

Theorem 3.3.4. For any x = w + n ∈ h with w ∈ t, n ∈ hn, there exists M ∈ H such
that x = AdM(w + n′) with [w, n′] = 0 and n′ ∈ hn.

Proof. We have the Jordan decomposition (see Section Remark 2.4.10) x = xs+xn, where
xs is semisimple, xn is nilpotent and [xs, xn] = 0. Then by Theorem 2.4.9 the element xs
is conjugate to an element of t. Hence there exists M ∈ H such that AdM−1(xs) ∈ t. Note
that

AdM−1(xs) − xs ∈ [h, h]

as in the proof of Lemma 3.3.2. Moreover

xs − w = (x− xn) − (x− n) = n− xn ∈ hn.

As [h, h] ⊂ hn by Theorem 2.4.9, we get Ad−1
M (xs) − w ∈ hn. As both AdM−1(xs) and w

lie in t, we get that they are equal. Therefore putting n′ = AdM−1 xn we get

x = xs + xn = AdM(w) + AdM(n′) = AdM(w + n′)

and the conditions are satisfied.

Note that if w ∈ treg := t ∩ hreg is a regular element in t, then the only nilpotent n′

commuting with w is 0. Therefore we get

Corollary 3.3.5. For every w ∈ treg and n ∈ hn, the elements w and n+w are conjugate.

Example 3.3.6. Let us see two examples for H = B3, the Borel subgroup (of upper
triangular matrices) of SL3(C). Let the principal nilpotent element e be of the form

e =

⎛⎜⎝0 1 0
0 0 1
0 0 0

⎞⎟⎠ .
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3. Regular elements and Kostant sections

1. Let w ∈ t be of the form w = diag(0, v1, v2) − v1+v2
3 I3 with v1 ̸= 0, v2 ̸= 0, v1 ̸= v2.

Then note that the matrix e+w is diagonalisable in the basis defined by the matrix

Mw =

⎛⎜⎝1 1
v1

1
v2(v2−v1)

0 1 1
v2−v1

0 0 1

⎞⎟⎠ ,
i.e. e+ w = MwwM

−1
w .

2. Consider the matrix e+w, where w ∈ t is of the form w = diag(0, v1, 0) − v1
3 I3 with

v1 ̸= 0. If we take

Mw =

⎛⎜⎝1 1
v1

0
0 1 1
0 0 −v1

⎞⎟⎠ ,
then ⎛⎜⎝0 1 0

0 v1 1
0 0 0

⎞⎟⎠ = Mw

⎛⎜⎝0 0 1
0 v1 0
0 0 0

⎞⎟⎠M−1
w .

Therefore for e+ w =

⎛⎜⎝0 1 0
0 v1 1
0 0 0

⎞⎟⎠− v1
3 I3 we get

(e+ w) = Mw

⎛⎜⎝−v1/3 0 1
0 2v1/3 0
0 0 −v1/3

⎞⎟⎠M−1
w .

The matrix Mw used here does not have determinant one. We can however multiply
it by any cubic root of v−1

1 to get a matrix from B3.

Remark 3.3.7. Even for H = Bm, the Borel subgroup of SLm, we cannot require w + n′

from Theorem 3.3.4 to be the classical Jordan form, under no additional assumption on x.
Even for w = 0, there is an infinite number of nilpotent orbits of adjoint action of Bm on
bm for m ≥ 6, see [44]. One can prove that if x is a regular matrix, then we can actually
find n′ which is a nilpotent Jordan matrix.

3.3.2 Reductive groups
Assume that G is a reductive group. Let T be its maximal torus, B a Borel subgroup
containing T, B− the opposite Borel, U and U− the respective unipotent subgroups. Let
g, t, b, b−, u, u− be the corresponding Lie algebras. Let (e, f, h) be a principal sl2-triple
in g, such that e ∈ u, f ∈ u−, h ∈ t. Let

S = e+ Cg(f)

be the Kostant section.

Lemma 3.3.8. Under the assumptions above

Ad−(−) : U− × S → e+ b−

is an isomorphism.
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Proof. If G is semisimple, then the map

Ad−(−) : U− × S → e+ b−

is an isomorphism ([83, Theorem 1.2], see also another proof in [52, Theorem 7.5]).
Now if G is an arbitrary reductive group, let Gad be its adjoint group and let π : G → Gad

be the quotient map. From [90, Proposition 17.20] we have that π(B) and π(U−) are
Borel and maximal unipotent in Gad, respectively. Note that kerπ = Z(G) and the
identity component of Z(G) is a torus ([90, Proposition 19.12]). As a torus contains
no nontrivial unipotent elements, we have kerπ ∩ U− = {1}. Therefore π|U− is an
isomorphism U− ∼= π(U−). We then know from above that

Ad−(−) : π(U−) × SGad → e+ b−
Gad

is an isomorphism. From [77, Theorem II.11] we can identify gad with an ideal inside g
such that g = Z(g) ⊕ gad. Then we have

π(U−) × SG ∼= (π(U−) × SGad) × Z(g)

and
b−

G = b−
Gad × Z(g).

As the adjoint representation is trivial on the centre of a Lie algebra, we have the following
diagram, where the middle column is the product of the left and right and the horizontal
arrows are the projections.

π(U−) × SGad U− × SG Z(g)

e+ b−
Gad e+ b−

G Z(g)

Ad−(−) Ad−(−) =

As the peripheral vertical arrows are isomorphisms, we get that also for G the map

Ad−(−) : U− × S → e+ b−

is an isomorphism.

Let us now consider the preimage of e + t and for any w ∈ t denote by A(w) ∈ U−,
χ(w) ∈ S the elements such that

AdA(w)(e+ w) = χ(w). (3.3)

Note that we have two inclusions of affine spaces S ↪→ g and e+t ↪→ g. The former induces
the isomorphism S ∼= g//G, i.e. C[g]G

∼=−→ C[S] by [82, Section 4.7, Theorem 7]. The latter
induces a map C[g]G → C[e+ t]. However, a regular element w ∈ t is conjugate to w + e
(see Corollary 3.3.5). Let us then consider the composition C[g]G → C[e + t] → C[t],
where the last map comes from translation by e. It is equal to the map C[g]G → C[t]
coming from inclusion t → g – as the dual maps of schemes agree on a dense subset of t,
i.e. on treg.
Note that if we compose χ∗ : C[S] → C[t] with the isomorphism C[g]G → C[S] described
above, then we get the composite map above C[g]G → C[t], which now we know is induced
by inclusion t → g. By Chevalley’s restriction theorem (cf. [39, Theorem 3.1.38]) this
map is an inclusion whose image is C[t]W.
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3. Regular elements and Kostant sections

Remark 3.3.9. Chevalley’s theorem is originally formulated for semisimple groups. However,
if we again consider gad as an ideal of g such that g = gad ⊕ Z(g), we have

C[g]G = C[gad ⊕ Z(g)]Gad = C[gad]Gad ⊕ Z(g) = C[t ∩ gad]W ⊕ Z(g) = C[t]W,

where the third equality follows from original Chevalley’s theorem for Gad.

Therefore we get

Proposition 3.3.10. The map χ : t → S defined by property (3.3) induces an isomorphism
t//W → S.

3.3.3 Principally paired groups
Let now H be any principally paired group. Let N be the unipotent radical of H. Then N
is a normal subgroup of H and H/N is reductive. Let L ⊂ H be any Levi subgroup, i.e.
a section of H → H/N, cf. Theorem 2.4.13. We have H = N ⋊ L and hence h = n ⊕ l,
where h, n, l are the Lie algebras of H, N, L, respectively. Let r be the dimension of any
maximal torus in H.

Assume that (e, h) is an integrable principal b(sl2)-pair within h and let {H t}t∈C× be the
embedding of C× to which h integrates. We can choose L such that h ∈ l, hence we will
assume this inclusion from now on. We then have e = en + el, where en ∈ n, el ∈ l. Let
us consider, by the Jacobson–Morozov Theorem (cf. Section 3.2), the sl2-triple (el, fl, hl)
within l.

Lemma 3.3.11. For H and (e, h) as above, el is a regular element of l.

Proof. We know that e is a regular element of h. This means that [e, h] is of codimension
r in h. But note that [e, h] ⊂ n ⊕ [el, l] as n is an ideal. Therefore [el, l] is of codimension
at most r in l. Therefore dimCl(el) ≤ r, hence actually dimCl(el) = r and el is regular
in l.

Now, let Bl be a Borel subgroup of L whose Lie algebra contains el and h and inside it let
T be a torus whose Lie algebra contains h. Let B = N ⋊ Bl ⊂ H – it is easy to see that B
is then a Borel subgroup of H. Let U be its subgroup of unipotent elements. Given Bl

and T, let B−
l be the opposite Borel subgroup of L and Ul, U−

l the unipotent subgroups
of Bl and B−

l . By b, bl, t, b−
l , u, ul, u−

l we denote the corresponding Lie algebras. Let W
be the Weyl group of H (equal to the Weyl group of L).

Lemma 3.3.12. All the weights of {H t}-action on u are positive even integers.

Proof. As e is regular in H, it has to be regular in B as well. Therefore [e, b] = u (cf.
Section 3.1).

We can choose a basis of b which consists of eigenvectors of [h,−]. We then choose from
it a subset {v1, v2, . . . , vk} such that {[e, vi]}ki=1 forms a basis of u. Then [e,−] is an
isomorphism span(v1, . . . , vk) → u. Let ϕ denote this restricted commutator operator
[e,−]. For any v ∈ b we have

[h, [e, v]] = [[h, e], v] + [e, [h, v]] = 2[e, v] + [e, [h, v]],
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hence if [h, v] = λv, we get [h, [e, v]] = (λ+ 2)[e, v]. Therefore for an h-weight vector v, ϕ
satisfies the condition

[h, v] = λv ⇐⇒ [h, ϕ(v)] = (λ+ 2)ϕ(v).

Let us consider a weight vector w ∈ u such that [h,w] = λw and assume that λ is
not a positive even integer. We now know that w = ϕ(w1) for some w1 ∈ b with
[h,w1] = (λ−2)w1. As λ−2 ̸= 0, we have w1 ∈ u (as t has only zero weights of H t-action).
Then analogously w1 = ϕ(w2) for w2 ∈ b of weight λ − 4. As again λ − 4 ̸= 0, we get
w2 = ϕ(w3), and we continue this procedure to get an infinite sequence w = w0, w1, w2,
. . . , such that wi is a weight vector of weight wi − 2i. However, b is finite-dimensional, so
we get a contradiction.

For our principally paired H the role of the Kostant section will be played by

S := e+ Cl(fl) ⊂ h. (3.4)

Lemma 3.3.13. The conjugation map

Ad−(−) : U−
l × S → e+ b−

l

is an isomorphism.

Proof. With Lemma 3.3.11 we know that the conjugation map

Ad−(−) : U−
l × (el + Cl(fl)) → el + b−

l (3.5)

is an isomorphism. But note that the weights of the T-action on u−
l are exactly the

negatives of the weights on ul. Hence by Lemma 3.3.12, evaluated on h they are all
negative even integers. As n is an ideal in h, we have

[u−
l , en] ⊂ n.

However, we know (again from Lemma 3.3.12) that the h-weight of en (equal to 2) is
the lowest possible among the weights in n. However, all the h-weights in [u−

l , en] would
be lower, as the weights on u−

l are negative. Therefore in fact [u−
l , en] = 0. Hence U−

l

commutes with en.
Then we get the conclusion simply by adding en to both sides of (3.5).

Now note that we are given two one-parameter subgroups: H t and H t
l generated by h

and hl, respectively. We show that they are actually equal up to the centre of L.

Lemma 3.3.14. Let G be a reductive group and e a regular nilpotent element in g = Lie(G).
Then the only semisimple elements in its centraliser Cg(e) are the ones in the centre Z(g).

Proof. Assume that v ∈ g is a semisimple element such that [v, e] = 0. Choose a Borel
subgroup B ⊂ G whose Borel subalgebra b ⊂ g contains e and v and let n be the nilpotent
part of b. We can choose a maximal torus T within B whose Lie algebra contains v. Let
r = dim T = dimCg(e).
As e is regular in H, it is also regular in b and n = [b, e] (cf. Section 3.1). However,
b = t ⊕ n, so by iterating we easily see that as a Lie algebra b is generated by e and t.
Then as [v, e] = 0, this easily leads to [v, b] = 0. As b was a Borel subalgebra and v is
semisimple, from this [v, g] = 0 follows.
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From this lemma, as [h, e] = [hl, e] = 2e, we infer h − hl ∈ Z(l). In the map Ad−(−)
from Lemma 3.3.13, let us consider the preimage of e + t and for any w ∈ t denote by
A(w) ∈ U−, χ(w) ∈ S the elements such that

AdA(w)(e+ w) = χ(w). (3.6)

We will now want to generalise Kostant’s Theorem 3.3.1. First, we find the contracting
C×-action on S = e+ Cl(fl). Note that as el is regular in L, also fl is regular in L (see
Remark 3.2.4). Moreover, as all the weights of the H t-action on ul are positive integers,
on u−

l they are all negative integers. As the weight of the action on fl is −2 (note that
we use Lemma 3.3.14 to switch between the actions of hl and h), fl must lie in u−

l . In
particular fl ∈ b−

l , and as b−
l contains the Lie algebra of the maximal torus of L, we have

that fl is regular in b−
l . This means that Ch(fl) ⊂ b−

l (cf. Section 3.1). In particular,
all the weights of the H t-action on Ch(fl) are nonpositive integers. Therefore, for any
x ∈ Ch(fl), we have

AdHt(x+ e) = AdHt(x) + t2e = t2
(︂
AdHt(x)/t2 + e

)︂
and

lim
t→∞

AdHt(x)/t2 = 0.

Therefore if we define the action of C× on H by

t · v = t−2 AdHt(v),

then it preserves S and for any v ∈ S we have

lim
t→∞

t · v = e.

Theorem 3.3.15. Every element of S is regular in h. Moreover, every regular orbit of
the adjoint action of H on h meets S.

Proof. For the first part, we proceed as in the proof of Lemma 3.3.2. Assuming that for
some x ∈ Ch(fl) the element x+ e is not regular, we get that AdHt(x)/t2 + e is not regular
for any t and from continuity (t → ∞) we get that e is not regular.

Now assume that some y ∈ h is regular. It lies in a Borel subalgebra and as all Borel
subalgebras are conjugate, we can assume y ∈ b. As B contains a maximal torus of H,
we have that y is regular in b as well. Therefore by Lemma 3.3.3 it is conjugate to an
element of the form e+ v for v ∈ t. It is then conjugate to χ(v) ∈ S.

To finish the proof of C[h]H = C[S] we need the following lemma, known for reductive
groups already.

Lemma 3.3.16. C[h]H = C[l]L = C[t]W.

Proof. The latter equation is just Chevalley’s restriction theorem ([39, Theorem 3.1.38]
and Remark 3.3.9). We need to prove that the restriction map C[h]H → C[l]L is an
isomorphism.
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Let us first prove that it is surjective. We have the projection map π : H → L ≃ H/N
and we can use it to pull back any L-invariant function on l. If f is such a function, its
pullback is f ◦ π∗ and for any g ∈ H and v ∈ h we have

(f ◦ π∗)(Adg(v)) = f(Adπ(g)(π∗(v))) = f(π∗(v)) = (f ◦ π∗)(v),

hence f ◦ π∗ is H-invariant. It also obviously restricts to f on l, hence we proved that the
restriction C[h]H → C[l]L is surjective.

Now we prove injectivity. As every element of H is contained in a Lie algebra of a Borel
subgroup, and they are all conjugate, a function from C[h]H is fully determined by its
values on b. We know that b = t ⊕ u and the weights of the H t-action on t are all 0, and
on u they are all positive.

Therefore any polynomial on b which is invariant under this action, can only contain the
t-variables. Hence it is uniquely determined by its values on t.

From the proof of Lemma 3.3.13 and from Proposition 3.3.10 the map χ defines an
isomorphism C[S] → C[t]W and when composed with the restriction from C[h]H, it clearly
gives the restriction C[h]H → C[t]W (note that x and χ(x) are always conjugate). Then
from Lemma 3.3.16 we get

Theorem 3.3.17. The restriction map C[h]H → C[S] is an isomorphism.

In particular, this means that no elements of S are conjugate to each other. Together
with Theorem 3.3.15 this gives

Corollary 3.3.18. Every regular orbit of the adjoint action of H on h meets S exactly
once.

3.4 Regular actions and fixed point sets
Definition 3.4.1. Assume we are given a principally paired H with (e, h) being the
integrable principal b(sl2)-pair in h. If H acts on a smooth projective variety X, we say
that it acts regularly if e has a unique zero o ∈ X.

Remark 3.4.2. The choice of integrable principal pair (e, h) in h is not unique. However,
we will see below in Lemma 3.4.8 that the property of the action being regular does not
depend on the choice.

Note that as e is nilpotent, it generates an additive subgroup of H (see Theorem 2.4.7)
and hence by Theorem 2.5.5 the zero scheme Xe of Ve is connected. It is therefore enough
to assume that the zeros of e are isolated. We will in fact prove in Lemma 3.4.8 that all
the regular elements of h have isolated zeros on X.
Example 3.4.3. This example is from the PhD thesis of Ersan Akyildiz [1], see also [2].
Consider a complex reductive group G, with the choice of e as in Example 3.1.2. By
the discussion in Section 3.2 there exists h ∈ g which makes G principally paired. Let
X = G/B be the full flag variety of G. Then for any x = gB ∈ X, from Lemma 2.5.2

Ve|x = Dg(VAdg−1 (e)|[1]).
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Therefore Ve vanishes at x if and only if Adg−1(e) vanishes at [1] = B. This means that
Adg−1(e) ∈ b = Lie(B), or in other words, e ∈ Lie(gBg−1). The subgroup gBg−1 is of
course a Borel subgroup of G. By [39, Proposition 3.2.14] the group B is the unique Borel
subgroup of G whose Lie algebra contains e. Therefore e ∈ Lie(gBg−1) only if gBg−1 = B.
By [19, 11.16] this is true only for g ∈ B, i.e. x = [1]. Therefore G acts on the full flag
variety G/B regularly.

Hence it also acts regularly on all the partial flag varieties G/P. Indeed, assume that
x ∈ G/P is a zero of the vector field given by e. If we denote by πP the projection
πP : G/B → G/P, then π−1

P (x) is a closed subvariety of G/B, closed under the action of
Ga generated by e. Hence by the Borel fixed point theorem (Theorem 2.5.4), it contains
a fixed point of Ga, which is unique on G/B. Therefore x must be the image of the only
fixed point on G/B.
Example 3.4.4 (see [28, Section 6]). Let H = SL2(C) and consider the irreducible repre-
sentation W of SL2(C) of dimension n+ 1. In particular, the regular nilpotent

e =
(︄

0 1
0 0

)︄

acts on W with the matrix ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
... ... ... ... . . . ...
0 0 0 0 . . . 1
0 0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

If we consider X = P(W ), the action is clearly regular and the only fixed point of e
corresponds to the vector of highest weight in V .

3.4.1 Solvable groups

Lemma 3.4.5. Let H be a solvable group. Let T be its maximal torus and hn be the
nilpotent part of h = Lie(H). Assume that e ∈ hn, h ∈ t are such that (e, h) is an integrable
b(sl2)-pair and that H acts regularly on a smooth projective variety X. Then any element
of e+ t has isolated zeros on X.

Proof. We will denote by {H t}t∈C× the one-parameter subgroup to which h integrates.
Define Z ∈ t×X as the zero scheme of the total vector field restricted to e+t ∼= t. In other
words, for any w ∈ t, that vector field restricted to {w} ×X equals Ve+w (cf. Definition
2.5.1). Consider also an action of C× on t ×X which is defined on t by multiplication by
t−2 and on X by the action of H t. As AdHt(e) = t2e, for any v ∈ t we have

AdHt(e+ v) = t2e+ v = t2(e+ v2/t).

Therefore by Lemma 2.5.2 the action on t ×X preserves Z.

Consider the map π : Z → t defined as the projection onto the first factor of t ×X. As it
is a morphism of schemes locally of finite type, by Chevalley’s semicontinuity theorem
[57, 13.1.3], the set

D = {(w, x) ∈ Z : dim πw ≥ 1}
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is closed. Here
πw := π−1(w) ⊂ Z

denotes the fibre. Suppose D is nonempty. Hence we have some w ∈ t such that
dim{x ∈ Z : (w + e)|x = 0} ≥ 1. Note that for any t ∈ C× we have

t2w + e = t2(w + t−2e) = t2 Ad−1
Ht(w + e).

Therefore the zero set of t2w + e is the same as the zero set of Ad−1
Ht(w + e), which by

Lemma 2.5.2 is isomorphic – via the action of H t – to the zero set of w + e. Hence for
each t ̸= 0 we have (tw, o) ∈ D, where o ∈ X is the unique zero of e. By closedness of D
we therefore get (0, o) ∈ D. Hence dim π0 ≥ 1, which is impossible, as π0 = {(0, o)} by
our regularity assumption.

Theorem 3.4.6. Assume H and X are as in Lemma 3.4.5 and e is a principal nilpotent.
Then any regular element of h has isolated zeros on X.

Proof. It now follows directly from Lemma 3.4.5 and Lemma 3.3.3.

In particular, regular semisimple elements have isolated zeros on X. Therefore we get

Corollary 3.4.7. There are finitely many T-fixed points on X.

3.4.2 General principally paired groups
With the use of the results of Section 3.3.3 we can also provide a version of Theorem 3.4.6
for arbitrary principally paired groups.

Lemma 3.4.8. Let a principally paired group H act regularly on a smooth projective
variety X. Then all the regular elements of h have isolated zeros on X.

Proof. We know from Lemma 3.3.15 that every regular element of h is conjugate to an
element of S from (3.4). Therefore it is enough to prove the statement for the elements
of S. The argument is the same as in the proof of Lemma 3.4.5, using the contracting
action from Section 3.3.3. Note that if p ∈ X is a zero of x + e, then H tp is a zero of
AdHt(x)/t2 + e. Therefore if (x+ e, p) ∈ D, we have (AdHt(x)/t2 + e,H tp) ∈ D for any
t ∈ C× and then (e, limt→∞ H tp) ∈ D.
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CHAPTER 4
Zero schemes and ordinary

cohomology

In this chapter we review already existing results that relate topological invariants, in
particular the cohomology ring, to local invariants of vector fields. A good review, with
the focus on torus actions, can be also found in [32].

4.1 Quantitative invariants
The idea of extracting global topological data of manifolds from local data of a vector
field has a long history. The first notable example is of course the Poincaré–Hopf theorem.

Theorem 4.1.1 (Poincaré–Hopf). Let X be a smooth compact manifold. Let V be a
vector field on X with isolated zeros. Then the sum of indices of the zeros is equal to the
Euler characteristic χ(X).

A reader interested in the proof should check one of the classical books on differential
geometry, e.g. [91]. We will be interested in results that refine the Poincaré–Hopf theorem.
This means that we would like to be able to determine more complicated topological
invariants from the vector fields. One particular such result is Bott’s residue formula [20].
First, for any endomorphism f : W → W of a vector space we denote ci(f) = tr Λif . It is
the coefficient of the characteristic polynomial, i.e.

det(f − λ idW ) =
dimW∑︂
i=0

(−1)icdimW−i(f)λi.

Every vector field V on X defines the Lie derivative on the vector fields, which maps a
vector field Y to [V, Y ]. If V vanishes at a point x ∈ X, then for any vector field Y , [V, Y ]x
only depends on Yx. This means that V defines an endomorphism Lx : Tx,X → Tx,X . Bott
proves that we can compute the Chern numbers of complex manifolds with use of those
operators.

Theorem 4.1.2 (Bott, 1967). Assume that X is a compact connected complex manifold
of complex dimension m. Let V be a nondegenerate holomorphic vector field, i.e. a vector
field with isolated zeros such that cm(Lx) is nonzero for any zero x of V . Consider a
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polynomial Φ ∈ Q[c1, c2, . . . , cm]. We consider ci to be of weight i and assume that Φ is
of weight at most m. We denote the corresponding Chern number by Φ(X). Then∑︂

Vx=0
Φ(Lx)/cm(Lx) = Φ(X).

Note that if Φ = cm, then Φ(X) = χ(X). The requirement cm(Lx) ̸= 0 implies indx(V ) = 1
and therefore the formula agrees with Poincaré–Hopf theorem. However, both theorems
only allow us to compute quantitative invariants, i.e. numbers associated with the topology
of the manifold. Note that Morse theory, or its algebraic counterpart, i.e. Białynicki-
Birula decomposition, also allows us to infer the Betti numbers of the manifold/variety
by considering the isolated singularities of a vector field. However, this does not give a
way of recovering the ring structure on cohomology. The first result of this kind, which
allows the computation of the cohomology ring, comes from two papers of Carrell and
Lieberman from the 1970s [35, 36].

4.2 Carrell–Lieberman theorem for smooth varieties
In [36, Main Theorem and Remark 2.7] the following theorem is proved. We give its
formulation and sketch the proof. The paper talks about complex manifold, but in fact
the assumptions imply [36] that the manifold is algebraic. As we are in general interested
in algebraic situation, we will work under algebraicity assumption.

Theorem 4.2.1. Let X be a smooth projective complex algebraic variety of dimension n.
Consider an algebraic vector field V ∈ Vect(X) and assume that its zero set is isolated,
but nonempty. Let Z denote the zero scheme of V . Then the coordinate ring C[Z] admits
an increasing filtration

F• : 0 = F−1 ⊂ F0 ⊂ F1 ⊂ · · · ⊂ Fn = C[Z]

such that
H∗(X,C) ≃ GrF (C[Z]).

The degree on the left is twice the degree on the right, and in particular H i(X,C) vanishes
for i odd.

Remark 4.2.2. One might obviously be tempted to ask what the relation between the
cohomology ring and the ring of functions on the zero scheme is, if the zeros are not
isolated. We will address this question in more detail in Chapter 6. For now, let us note
that in [35] the authors prove that if the zero set Z is nonempty, then

Hq(X,Ωp) = 0

whenever |p − q| > dimC Z. In particular, if dimZ ≤ 1, then the cohomology of X is
Tate, i.e. Hq(X,Ωp) = 0 if p ̸= q.

Sketch of proof of Theorem 4.2.1. The vector field V defines a section of the tangent
bundle TX of X. Consider the Koszul complex defined by that section:

0 → Ωn
X

ιV−→ Ωn−1
X

ιV−→ . . .
ιV−→ Ω1

X
ιV−→ OX → 0.
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By Theorem 2.2.9 it is a resolution of OZ and by Corollary 2.2.11 we then get the spectral
sequence

Epq
1 = Hq(X,Ω−p)

convergent to Hp+q(X,OZ). We will prove that it degenerates. We inductively prove that
all the differentials in the Ek page are trivial for k = 1, 2, . . . . First note that the Koszul
complex comes with a pairing ∧ : Ωi ⊗ Ωj → Ωi+j. This in turn induces naturally the
product structure on the spectral sequence, with the products

∧ : Ep1,q1
r ⊗ Ep2,q2

r → Ep1+p2,q1+q2
r .

They stay compatible with the differentials, so that

dr(α ∧ β) = dr(α) ∧ β + (−1)p1+q1α ∧ dr(β)

whenever α ∈ Ep1,q1
r , β ∈ Ep2,q2

r .

Let ω ∈ H1(X,Ω1) be the class of the Kähler form. We prove first that d1(ω) = 0 in
H1(X,OX). By Serre duality it is enough to prove that it wedges trivially with any
element of Hn−1(X,Ωn). An element of Hn−1(X,Ωn) is always of the form ωn−1 ∧ η for
η ∈ H0(X,Ω1). We have

d1(ω) ∧ ωn−1 ∧ η = ιV (ω) ∧ ωn−1 ∧ η = 1
n
ιV (ωn) ∧ η.

Now by the Leibniz identity we have

ιV (ωn ∧ η) = ιV (ωn) ∧ η + ωn ∧ ιV (η).

The left-hand side vanishes as ωn ∧ η = 0 for dimensional reasons. Moreover, ιV (η) is a
function in H0(X,Ω0) which vanishes in zeros of V . As the zero set is nonempty, the
function is zero. Hence, we get ιV (ωn) ∧ η = 0, and therefore d1(ω) = 0. The higher
differentials dr for r > 1 then also vanish on the image of ω for dimensional reasons – the
target is H−r(X,Ω−1+r) = 0.

Now we proceed with induction. For a given r ≥ 1 we assume that the r-th page is

Epq
r = Hq(X,Ω−p).

We know that any element of Hq(X,Ω−p) admits the decomposition∑︂
i

ωiαi,

where αi ∈ Hq−i(X,Ω−p−i) is primitive. As we have proved dr(ω) = 0, it remains to prove
that dr(α) = 0 if α is primitive. This means that α ∈ Hq(X,Ωp) with p + q ≤ n and
ωn−p−q+1α = 0. We have dr(α) ∈ Hq−r+1(X,Ωp−r) and hence that dr(α) vanishes if and
only if ωn−p−q+2r−1dr(α) does. However, as dr(ω) = 0, we have

ωn−p−q+2r−1dr(α) = ω2r−2dr(ωn−p−q+1α) = 0,

where the last equality is the primitivity of α.

We proved that the spectral sequence degenerates at E1. Moreover, it converges to the
cohomology of OZ . However, as dimZ = 0, we have

H i(X,OZ) =

⎧⎨⎩C[Z] for i = 0;
0 otherwise.
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Therefore the convergence means that there is an increasing filtration Fi on the ring C[Z]
such that Fi/Fi−1 = H i(X,Ωi), and moreover Hq(X,Ωp) = 0 for p ≠ q. This proves the
claim.

Remark 4.2.3. One can notice that this refines the Poincaré–Hopf theorem. Indeed,
dimC[Z] is equal to the sum of indices of zeros of V . As the vector field is holomorphic,
all the indices are positive. If the vector field V is defined by a derivative of a torus
action, then the scheme Z is reduced (Theorem 2.5.6) and hence all the indices are equal
to 1. The Euler characteristic is equal to their number. In that case, we actually see the
additive structure of cohomology by Białynicki-Birula decomposition (Theorem 2.5.9).

The theorem provides some relation between the ring of functions on Z and the cohomology
ring of X. However, the filtration is usually not easy to determine. See for example [78],
[34], where the filtration is worked out e.g. for toric varieties.

There is however a situation, where the filtration is very easy. This is due to Akyildiz
and Carrell [4] (announced in [7]) and requires an auxiliary torus action. We include here
the result and its proof, as we will use it throughout.

Theorem 4.2.4 ([4], Theorem 1.1). Assume that X is a smooth projective variety of
dimension n. Assume that an algebraic vector field V ∈ Vect(X) has isolated, but nonempty
zero set. In addition, assume that we are given an action of C× on X, (t, x) ↦→ tx, which
satisfies the condition

t∗V = tkV

for some nonzero k ∈ Z. In other words, V is scaled under the pushforward action of
C×, and the weight of the scaling is nonzero. Then C× preserves the zero scheme Z of
V and all the weights of its action on C[Z] are nonnegative multiples of k. This gives a
grading C[Z] = ⨁︁n

i=0 C[Z]i, where C[Z]i is the part of C[Z] of weight −ki. Moreover, the
filtration F• in Theorem 4.2.1 satisfies

Fi(C[Z]) =
⨁︂
j<i

C[Z]j.

Hence GrF (C[Z]) ≃ C[Z] and therefore

H∗(X,C) ≃ C[Z].

as graded rings.

Proof. First of all, notice that for any t ∈ C×, the zero scheme of V is the same as the
zero scheme of tkV , hence C× preserves Z. Now we will lift the action of C× on X to an
action on the Koszul resolution from Theorem 4.2.1. First, for t ∈ C×, let tp : Ωp

X → Ωp
X

be the pullback of forms along the map t : X → X. Consider the following.

0 Ωn
X Ωn−1

X . . . Ω1
X OX 0

0 Ωn
X Ωn−1

X . . . Ω1
X OX 0

ιV

tknt−1
n

ιV

tk(n−1)t−1
n−1

ιV ιV

tkt−1
1 (t−1)∗

ιV ιV ιV ιV
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The vertical maps commute with the horizontal ones due to the condition

t∗V = tkV.

Hence we get a group of automorphisms of the Koszul complex, parametrised by C×. The
spectral sequences for hypercohomology are functorial and we use that property for the
sequence

Epq
1 = Hq(X,Ω−p) ⇒ Hp+q(X,OZ)

from the proof of Theorem 4.2.1. As the action on OX , the zeroth term of the Koszul
complex, is defined by the action of C×, on the right-hand side we see the action of C×

on OZ which descends from the action on X. We need to determine the action on the
left-hand side. By definition, t acts on Ωp by tkpt−1

p . The map t−1
p is the pullback of

p-forms via the action of C× on X. As C× is connected, for any t the corresponding map
is homotopic to the identity, and hence descends to the identity on the level of Hq(X,Ωp).
Therefore the action on the left-hand side is simply the multiplication by tkp. Hence the
C×-invariant filtration F• on C[Z] satisfies the property that the action of C× on Fi/Fi−1
is of pure weight ki. But there is only one such filtration, and it is the one described in
the theorem, coming from the grading by weights.

However unnatural the assumptions of Theorem 4.2.4 might seem at the first glance,
there is in fact a plenty of situations, where they are satisfied. Assume that SL2 acts on a
smooth projective variety X. In fact, we only need to assume that its Borel B(SL2), acts
on X. Remember that within SL2 we have the diagonal maximal torus, i.e.{︄

H t =
(︄
t 0
0 t−1

)︄⃓⃓⃓⃓
⃓ t ∈ C×

}︄
.

In the Lie algebra sl2, we have the three distinguished elements e, f , h. Recall

e =
(︄

0 1
0 0

)︄
.

Then H teH−t = t2e, i.e. AdHt(e) = t2e. Now if we take V = Ve to be the vector field
defined by the infinitesimal action of e on X, then by Lemma 2.5.2 we get

t∗V = t2e.

Then if the action is regular, i.e. e has a single zero on X, the assumptions of Theorem
4.2.4 are satisfied with k = 2.
Example 4.2.5. This is a continuation of Example 3.4.4. Recall that we consider the action
of SL2 on P(W ), where W is the n+ 1-dimensional irreducible representation of SL2. The
element e acts with the matrix ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
... ... ... ... . . . ...
0 0 0 0 . . . 1
0 0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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As we noted, the action is regular, hence the assumptions of Theorem 4.2.4 are satisfied.
Now let us determine the scheme structure on the zero scheme Z of e and the grading
defined by the C× action. Note that h acts on W with the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎝

n 0 0 . . . 0
0 n− 2 0 . . . 0
0 0 n− 4 . . . 0
... ... ... . . . ...
0 0 0 . . . −n

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,

i.e. H t ∈ SL2 acts with the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎝

tn 0 0 . . . 0
0 tn−2 0 . . . 0
0 0 tn−4 . . . 0
... ... ... . . . ...
0 0 0 . . . t−n

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

The only zero of e has coordinates [1 : 0 : 0 · · · : 0], hence it lies in the C×-invariant affine
patch Xo consisting of elements [1 : x1 : x2 : · · · : xn]. Then we have⎛⎜⎜⎜⎜⎜⎜⎜⎝

tn 0 0 . . . 0
0 tn−2 0 . . . 0
0 0 tn−4 . . . 0
... ... ... . . . ...
0 0 0 . . . t−n

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
x1
x2
...
xn

⎞⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

tn

tn−2x1
tn−4x2

...
t−nxn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and [tn : tn−2x1 : tn−4x2 : · · · : t−nxn] = [1 : t−2x1 : t−4x2 : · · · : t−2nxn]. Hence we see
that the action of H t on Xo scales the xi coordinate by t−2i. Then when we consider the
action on the ring of functions C[Xo] = C[x1, x2, . . . , xn], each xi variable is scaled by
t2i. This is because we act on the functions by (t−1)∗. This defines the grading on C[Xo].
Now we need to find the ideal that cuts out Z from Xo. Note that

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
... ... ... ... . . . ...
0 0 0 0 . . . 1
0 0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
x1
x2
...

xn−1
xn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
...
xn
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Now we have

(x1, x2, x3, . . . , xn, 0) =
x1 · (1, x1, x2, . . . , xn−1, xn) + (0, x2 − x2

1, x3 − x1x2, . . . , xn − x1xn−1,−x1xn).

This is an equality on vectors tangent to W in the point (1, x1, x2, . . . , xn). The first
summand is mapped to 0 when we pass to the quotient P(W ). The second is tangent to
the affine subspace with first coordinate 1. Therefore it maps to the vector (x2 − x2

1, x3 −
x1x2, . . . , xn − x1xn−1,−x1xn) tangent to Xo.
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The ideal of Z in C[Xo] is then generated by the coordinates x2 − x2
1, x3 − x1x2, . . . ,

xn − x1xn−1, −x1xn. This means that in C[Z] all the generators are determined by x1.
Explicitly x2 = x2

1, x3 = x3
1, . . . , xn = xn1 . The last equation then reduces to xn+1

1 = 0.
Hence

C[Z] = C[x1]/(xn+1
1 )

and x1 has degree 1 in the grading defined by the action of C×, as in Theorem 4.2.4.
Hence it corresponds to a degree 2 element in H∗(Pn,C). We recover the standard equality
H∗(Pn,C) = C[x1]/(xn+1

1 ) with x1 ∈ H2(Pn,C).

4.3 Singular varieties
So far, the results above have been formulated only for smooth varieties. A natural
question arises, whether something similar can be said in a singular case. The situation is
much trickier, as in general the tangent vectors do not form a bundle, and moreover the
cohomology cannot be expressed as ⨁︁Hq(X,Ωp).

However, if we can embed the singular variety with a regular action of B2 in another, now
smooth variety also with a regular action of B2, we can use the ambient variety to talk
about the vector fields. We sketch in short the story outlined in more detail in [32, §6.2].
Note first the following easy observation.

Proposition 4.3.1. Assume that B2 acts regularly on a smooth projective variety X.
Suppose Y ⊂ X is a smooth B2-invariant closed subvariety. Let Z ↪→ X be the zero scheme
of Ve, the vector field defined by the infinitesimal action of e. Then the scheme-theoretic
intersection Z ∩ Y is the zero scheme of the vector field defined by the infinitesimal action
of e on Y . The restriction C[Z] → C[Z ∩ Y ] fits into the commuting diagram

C[Z] H∗(X,C)

C[Z ∩ Y ] H∗(Y,C),

(4.1)

where the horizontal maps are the ones from Theorem 4.2.4.

Even if Y is not smooth, we can define the intersection Z ∩ Y . One would then hope
that C[Z ∩ Y ] will be still isomorphic to H∗(Y,C), with the isomorphism fitting in the
commuting diagram as above. Note that the map C[Z] → C[Z ∩ Y ] is the restriction of
global functions from an affine scheme to a subscheme. Therefore it is surjective, and so
if we want a singular B2-invariant Y ⊂ X to satisfy the Proposition, the restriction map
H∗(X,C) → H∗(Y,C) must also be surjective. Akyildiz–Carrell–Lieberman in [6] prove
the following.

Theorem 4.3.2. Let B2 act regularly on a smooth projective variety X. Assume that
Y ⊂ X is a B2-invariant closed subvariety such that H∗(X,C) → H∗(Y,C) is a surjection.
Then there is a surjective homomorphism of graded C-algebras C[Z ∩ Y ] → H∗(Y,C) such
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that the following diagram commutes:

C[Z] H∗(X,C)

C[Z ∩ Y ] H∗(Y,C).

(4.2)

The homomorphism C[Z∩Y ] → H∗(Y,C) is an isomorphism if dimH∗(Y,C) = dimC[Z∩
Y ].

The last line of the theorem follows immediately from surjectivity. It turns out that the
condition dimH∗(Y,C) = dimC[Z ∩ Y ] is not void, although the examples are not easy
to produce. A typical situation, where the conditions of the theorem are satisfied, is
X = G/P being some generalised flag variety for a reductive group G and Y ⊂ X being
a Schubert subvariety, see [6], [30]. As proved in [3] and [8], the dimension equality is
always satisfied if G = SLn. However, for any simple G different from SLn, there exists
a codimension one Schubert variety of G/P, for which Z = Z ∩ Y . Hence, the theorem
does not hold in that case.

This led Carrell in [31] to define the extended zero scheme. Remember in Section 3.3.3
we defined the Kostant section, which for a solvable principally paired group H is equal
to e + t, where t is a maximal torus of H containing h such that (e, h) is a principal
b(sl2)-pair. In case H = B2, this is just S = e+ C · h = e+ t, where h = diag(1,−1) and
T is the standard diagonal torus of sl2. Consider now the total vector field (Definition
2.5.1) on b(sl2) ×X, restricted to S ×X. In other words, this is a family of vector fields
on X parametrised by t ∈ C such that for each t, the vector field equals Ve+th. Let Z be
the zero scheme of this vector field. Clearly, Z ∩ ({e} ×X) = Z is equal to SpecH∗(X,C)
by Theorem 4.2.4. However, Z was a thick point, but the deformation Z turns out to
be reduced! Moreover, the reduced intersections turn out to provide the information on
cohomology of subvarieties.

Theorem 4.3.3 ([31], Theorem 1). Let X be a smooth projective variety with regular action
and let the zero scheme Z be defined as above. Then Z is reduced. Let Y ⊂ X be a closed
B2-invariant subvariety of X such that the restriction on cohomology H∗(X,C) → H∗(Y,C)
is a surjection. Define ZY to be the reduced intersection Z ∩ (S × Y ). Then the scheme-
theoretic intersection ZY = ZY ∩ ({e} × Y ) is isomorphic to SpecH∗(Y,C). Moreover,
the isomorphism C[ZY ] → H∗(Y,C) fits into the commutative diagram

C[Z] C[Z] H∗(X,C)

C[ZY ] C[ZY ] H∗(Y,C).

≃

≃

(4.3)

The right column contains topological information, and the middle and left columns
contain algebraic information. The theorem proves that the middle column corresponds
to a topological object. One could ask whether this can be also said about the left column.
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This was answered by Brion and Carrell in [28]. The scheme Z turns out to be the
spectrum of C×-equivariant cohomology of X. We recall and generalise this theorem in
the next section. The generalisation is the main result of [66], a joint work of the author
and Tamás Hausel.
Remark 4.3.4. One can also ask what we could say about singular subvarieties which do
not satisfy the condition of surjective restriction on cohomology. We address this question
later in Theorem 6.1.1.
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CHAPTER 5
Zero scheme as the spectrum of

equivariant cohomology

In [28] the following theorem is proven.

Theorem 5.1. Assume that B2, the Borel subgroup upper triangular matrices in SL2,
acts regularly on a smooth projective variety X. Let S = e + t be the Kostant section
in B2. Let Z be the zero scheme of the vector field defined by the Lie algebra action on
S ×X. Then Z ≃ SpecH∗

C×(X), where H∗
C×(X) is the cohomology ring of X equivariant

with respect to one-dimensional diagonal torus in B2. Moreover, the structure of algebra
over H∗

C×(pt) ≃ C[t] is given by the projection map Z → S ≃ t.

In [66] we prove a vast generalisation of this result. This section, based on [66], presents
this result, proven with use of the techniques presented in Chapter 3.

5.1 Main theorem for solvable groups
We first consider a solvable group H acting on a variety X. We will prove that if the
action is regular, then for maximal torus T ⊂ H we can find SpecH∗

T(X) as a particular
subscheme of t ×X. This will generalise the above-mentioned result of [28], i.e. Theorem
5.1. The goal of this section is to find necessary assumptions on H and construct the
scheme Z = SpecH∗

T(X) inside t ×X.

5.1.1 Principally paired solvable groups
Throughout this section we assume that H is a principally paired solvable group and (e, h)
the principal integrable b(sl2)-pair within H. By {H t}t∈C× we denote the one-parameter
subgroup to which h integrates. Let T ⊂ H be the maximal torus which contains it. From
Theorem 2.4.9 we have H = T⋉Hu, where Hu ⊂ H is the subgroup of unipotent elements.
We denote by r the dimension of T (or t), equal to the rank of H. The torus T acts on the
Lie algebra h by the adjoint action Ad. It splits into two representations h = t⊕hn, where
hn = Lie(Hu). The first one is trivial and the weights of the other, α1, α2, . . . , αk ∈ t∗,
will be called the roots of H, in analogy with the roots of a reductive group. This means
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that if v1, v2, . . . , vk are the root vectors, then for any map ϕ : C× → T we have

Adϕ(t)(vi) = tαi(Dϕ|1(1))vi.

Recall from Section 3.1 that an element v ∈ h is called regular if its centraliser has
dimension r. The (open and dense) set of regular elements in h is denoted hreg. We
denote by treg = t ∩ hreg the subset of t consisting of regular elements. As any element of
t commutes with the whole t, the condition of v ∈ t being regular means Ch(v) = t. This
means that [v,−] does not have zeros on hn, i.e. α1(v), α2(v), . . . , αk(v) are all nonzero.
Hence we see that the elements of treg are those in t that are not annihilated by any root
of H. As h ∈ t is regular, all the roots are nonzero on h – by Lemma 3.3.12 they are even
positive integers when evaluated on h – hence non-zero. Therefore treg is a complement of
a union of hyperplanes.

In our applications H will mostly be the Borel subgroup of some reductive group G. Let
us see an example below.
Example 5.1.1. A simple case of the above is H = Bm = B(SLm), the Borel subgroup
of SLm consisting of upper triangular matrices. Let bm be its Lie algebra. We have the
torus T ⊂ Bm consisting of diagonal matrices of determinant 1 and its Lie algebra t ⊂ bm
consisting of traceless diagonal matrices.

For the sake of computations, in the examples we will identify t with Cm−1 via the
isomorphism

(v1, v2, . . . , vm−1) ↦→ diag(0, v1, v2, . . . , vm−1) − v1 + v2 + · · · + vm−1

m
Im,

i.e. (v1, v2, . . . , vm−1) corresponds to the unique matrix A in t with aii − a11 = vi−1 for
i = 1, 2, . . . ,m− 1. Then we can take e.g.

e =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
... ... ... ... . . . ...
0 0 0 0 . . . 1
0 0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ g

and

h =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

m− 1 0 0 . . . 0
0 m− 3 0 . . . 0
0 0 m− 5 . . . 0
... ... ... . . . ...
0 0 0 . . . 1 −m

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,

or equivalently h = (−2,−4, . . . , 2 − 2m) ∈ Cm−1. Such e and h form a b(sl2)-pair. Then

H t = diag(tm−1, tm−3, tm−5, . . . , t3−m, t1−m).

The regular elements of t are the diagonal traceless matrices with pairwise distinct diagonal
entries.

We can generalise this example by taking H to be a Borel subgroup of any reductive group
G. This choice defines the choice of positive roots (as those whose root vectors lie in h).
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We can therefore take e = x1 + x2 + · · · + xs, where x1, x2, . . . , xs are the root vectors
of g corresponding to the positive simple roots (s = r − dimZ(G)). Then e is a regular
nilpotent in g and h (see Example 3.1.2). From the discussion in Section 3.2 we see that
there exists h that satisfies the conditions.

5.1.2 Uniform diagonalisations
We saw in Corollary 3.3.5 that e+w is always conjugate to w if w ∈ treg. In the first case
in Example 3.3.6, we have a closed formula for the conjugating matrix in case of B3. We
generalise this observation here.

Theorem 5.1.2. There exists a morphism M : treg → H denoted by w ↦→ Mw that satisfies
the equality

AdMw(w) = e+ w

for any w ∈ treg.

Proof. From Corollary 3.3.5 we know that for each w ∈ treg and n ∈ hn there exists A ∈ H
such that

AdA(w) = n+ w. (5.1)

We have to prove that for n = e we can choose such matrices in a way that varies regularly
when w varies.
We know by Theorem 2.4.9 that for any A ∈ H there exists V ∈ T such that AV ∈ Hu.
Any element of T clearly centralises w. Hence if A is chosen such that AdA(w) = n+ w,
then also AdAV (w) = n + w. Hence we can assume that A ∈ Hu. We first show that
A ∈ Hu is unique with respect to (5.1). Indeed, assume on the contrary that A, A′ are
both unipotent and AdA(w) = AdA′(w) = n+ w. Then

AdA−1A′(w) = AdA−1(n+ w) = w.

Thus A−1A′ centralises w. Hence it centralises A(w), the smallest closed subgroup of H
whose Lie algebra contains w. The group A(w) is contained in the torus T, therefore
by [74, 19.4] its centraliser CH(A(w)) is connected. But Lie(CH(A(w))) has to commute
with Lie(A(w)), which contains w. By the regularity assumption Ch(w) = t, thus from
connectivity we get CH(A(w)) ⊂ T. Therefore A−1A′ ∈ T, but as A−1A′ is unipotent we
get A−1A′ = 1, hence A = A′.
Now consider the map

ϕ : Hu × treg → hn ⊕ treg

ϕ(A,w) = AdA(w).
We have just proved that ϕ is a bijection. Now by Grothendieck’s version of Zariski’s main
theorem ([56, Theorem 4.4.3]) it can be factored as ϕ = ϕ̃ ◦ ι, where ι : Hu × treg → Y is
an open embedding and ϕ̃ : Y → hn ⊕ treg is finite. By restricting Y to the closure of im ι,
we can assume that im ι is dense in Y . The map ϕ is clearly dominant, and its source is
irreducible, hence by [61, Proposition 7.16] it is birational. Therefore ϕ̃ is birational as
well, but it is finite and its target is normal, hence ϕ̃ is an isomorphism. Therefore ϕ is
an open embedding, which has to be an isomorphism, as it is surjective.
Hence we get the desired map M : treg → Hu by considering the first coordinate of
ϕ−1|{e}×treg .
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5. Zero scheme as the spectrum of equivariant cohomology

5.1.3 Regular actions
From now on we will assume that our principally paired solvable group H acts on a smooth
projective variety X regularly (Definition 3.4.1). By Lemma 2.5.3 the unique zero o ∈ X
of e is a zero of the whole h. Let n = dimX.
Example 5.1.3. In Example 3.4.3 we see regular actions of reductive group G on flag
varieties. In Example 3.4.4 we constructed a regular action of SL2 on Pn. In both cases,
when we restrict to a Borel subgroup, we get a solvable principally paired group (Example
5.1.1) acting regularly on smooth projective varieties.

By Corollary 3.4.7 there are finitely many fixed points of the torus T acting on X. We
will call them ζ0 = o, ζ1, . . . , ζs. Moreover, combining Lemma 3.4.5 with Lemma 2.3.4 we
get that for any w ∈ treg the only zeros of Vw on X are ζ0, ζ1, . . . , ζs.

Now, following the idea of [28], we define the scheme whose coordinate ring will turn out
to be the H-equivariant cohomology of X. This will be an analog of Theorem 5.1. As H
is homotopically equivalent to its maximal torus T, this is the same as the T-equivariant
cohomology.

Definition 5.1.4. Let Z ⊂ t ×X be defined as the zero scheme of the total vector field
(Definition 2.5.1) restricted to e+ t ∼= t. We will denote that restricted vector field by Ve+t.
In other words, for any w ∈ t, the vector field Ve+t restricted to {w} ×X equals Ve+w.

We will also consider an action of C× on t ×X which is defined on t by multiplication
by t−2 and on X by the action of H t. As AdHt(e) = t2e, for any v ∈ t we have
AdHt(e+ v) = t2(e+ v/t2). Hence from Lemma 2.5.2 this C×-action preserves Z.

Our goal will be to prove the following theorem.

Theorem 5.1.5. Let H be a principally paired solvable group acting regularly on a smooth
complex projective variety X. Then there is a homomorphism

ρ : H∗
T(X) → C[Z]

to be defined in (5.5), which is an isomorphism of graded C[t]-algebras. Moreover, the zero
scheme Z is affine, so that we have the following diagram with horizontal isomorphisms:

Z SpecH∗
T(X;C)

t SpecH∗
T.

π

ρ∗

∼=

We will first study the structure of Z with connection to the torus-fixed points ζ0, . . . , ζs.
We will also prove that Z is reduced. This will allow us to define a map ρ : H∗

T(X) → C[Z]
by specifying ρ(c) by its values. To show that ρ(c) is a regular function on Z, we will
prove that H∗

T(X) is generated by Chern classes of H-equivariant vector bundles.

5.1.4 Equivariant cohomology and Białynicki-Birula
decomposition

We know that the T-equivariant cohomology H∗
T(pt) = C[t] of the point is the ring of

polynomials on t. As in Section 2.6.2, by I we will denote the ideal of polynomials
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5.1. Main theorem for solvable groups

vanishing at 0, equivalently I = ⨁︁
n>0 H

n
T(pt). The multiplicative group C× acts on X

by the means of the morphism H : C× → H, t ↦→ H t. As noted above, this action has
finitely many fixed points ζ0, ζ1, . . . , ζs. As outlined in Section 2.5.3, we can consider its
Białynicki-Birula plus- and minus- decomposition i.e.

W+
i = {x ∈ X : lim

t→0
H t · x = ζi}, W−

i = {x ∈ X : lim
t→∞

H t · x = ζi}.

All those sets are locally closed varieties, isomorphic to affine spaces. By Theorem 2.5.9,
the space X has cohomology only in even degrees. Therefore by Theorem 2.6.4, the
T-space X is equivariantly formal. In particular

H∗
T(X) ∼= H∗

T(pt) ⊗H∗(X) (5.2)

as H∗
T(pt)-modules and

H∗(X) ∼= H∗
T(X)/IH∗

T(X)

as C-algebras.

Theorem 5.1.6. Białynicki-Birula plus-decomposition X = ⋃︁s
i=0 W

+
i is H-stable.

Proof. Assume that x ∈ W+
i , i.e. limt→0 H

t · x = ζi. Let M ∈ H and x′ = Mx and let
ζj = limt→0 H

t · x′. Then

H tx′ = H tMx = (H tM(H t)−1)H tx. (5.3)

Let M = D · U , where D ∈ T and U ∈ Hu. As H t ∈ T, it commutes with D, therefore

H tM(H t)−1 = DH tU(H t)−1. (5.4)

Now as U ∈ Hu, we have U = exp(u) for some u ∈ hn. Here exp should be understood as
the algebraic exponential for unipotent groups, as in Theorem 2.4.7. We then have

H tU(H t)−1 = H t exp(u)(H t)−1 = exp(AdHt(u)).

By Lemma 3.3.12, the weights of the H t-action on hn are positive. Therefore

lim
t→0

AdHt(u) = 0,

hence limt→0 H
tU(H t)−1 = 1. Combining (5.3) and (5.4) gives

H tx′ = DH tU(H t)−1H tx.

Passing to limit t → 0 then yields
ζj = Dζi.

As ζi is fixed by D ∈ T, we get i = j, hence x′ ∈ W+
i as desired.
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5.1.5 Structure of Z
In order to prove H∗

T(X) ∼= C[Z] we study the structure of Z and construct a map
H∗

T(X) → C[Z]. Let (w, x) ∈ Z. This means that e + w vanishes on x and by Lemma
3.4.5 it is an isolated zero. From Theorem 3.3.4, there exists M ∈ H such that e+ w =
AdM (w+ n′), where [w, n′] = 0 and n′ ∈ [h, h]. Then by Lemma 2.5.2 we have that M−1x
is a zero of w+ n′ and from Lemma 2.5.3 it is a zero of t. Hence we get x = Mζi for some
i ∈ {0, 1, . . . , s}. Moreover, not only is ζi a zero of t, but also of n′.
Example 5.1.7. We continue Example 3.3.6 and use the notation from Example 5.1.1 for
the elements of t.

1. Let w ∈ t ∼= C2 be of the form w = (v1, v2) with v ̸= 0, w ̸= 0, v ̸= w. We know
that e + w = MwwM

−1
w and therefore any zero of e + w is of the form x = Mwζi

and conversely, for any i, the point Mwζi is fixed by w + e.

2. If w = (v1, 0) with v1 ̸= 0, then we have a matrix Mw ∈ B3 such that

(e+ w) = Mw

⎛⎜⎝−v1/3 0 1
0 2v1/3 0
0 0 −v1/3

⎞⎟⎠M−1
w .

Therefore every zero of e + w is of the form x = Mwζi for i such that ζi is also a
zero of

E13 =

⎛⎜⎝0 0 1
0 0 0
0 0 0

⎞⎟⎠ .
But conversely, if ζi is additionally a zero of E13, then Mwζi is a zero of e+ w.

Remark 5.1.8. By Theorem 5.1.6, if x = Mζi, then ζi is in the same plus-cell as x. But
ζi itself is a torus-fixed point, hence ζi = limt→0 H

t · x. In particular, this means that
regardless of the potential choice of M we might make, we always get the same torus-fixed
point, i.e. if x = M1ζi1 = M2ζi2 , then i1 = i2. The elements M and n′ are however not
unique.

Note that for i = 0, 1, . . . , s and w ∈ t, there is at most one zero of e+ w in the plus-cell
of ζi. Indeed, assume that there are two such points. By above, if we choose any M such
that e+ w = AdM(w + n′), then they are of the forms x1 = Mζi1 , x2 = Mζi2 . But as in
the last paragraph, in fact we have i2 = i1 = i. Therefore x1 = x2.

If M−1x is a fixed point of the torus and w is not regular, then in general it does not
follow that e+ w vanishes at x, it does so only for particular torus-fixed points. Assume
that we are given w ∈ t and Mw ∈ H, n′ ∈ hn such that e + w = AdMw(w + n′) and
[w, n′] = 0. In this case if ζi is a zero of n′, then Mwζi is a zero of e + w. However, for
given w, the corresponding vector field Vn′ in general does not vanish in all the torus-fixed
points.
Example 5.1.9. Let us consider the standard action of B3 on P2, i.e. we define⎛⎜⎝a b c

0 d e
0 0 f

⎞⎟⎠ · [v0 : v1 : v2] = [u0 : u1 : u2]
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for u0, u1, u2 such that ⎛⎜⎝a b c
0 d e
0 0 f

⎞⎟⎠
⎛⎜⎝v0
v1
v2

⎞⎟⎠ =

⎛⎜⎝u0
u1
u2

⎞⎟⎠ .
We have three torus-fixed points ζ1 = o = [1 : 0 : 0], ζ2 = [0 : 1 : 0], ζ3 = [0 : 0 : 1]. For
w = (v1, v2) ∈ C2 ∼= t regular there exists a matrix Mw such that e + w = MwwM

−1
w .

Then Mwζi is a fixed point of e+ w for i = 1, 2, 3.

However, if w = (v1, 0) with v1 ̸= 0, then there exists a matrix Mw such that e + w =
Mw(w + e13)M−1

w . The vector field Ve13 corresponding to e13 vanishes at ζ1 and ζ2 (but
not at ζ3), therefore the zeros of e+ w are exactly of the forms Mwζ1 and Mwζ2.

Specializing even more, if we consider w = (0, 0), then e + w = e is already a Jordan
matrix (we can take Mw = I3). Its only zero is ζ1 = o, so the only fixed point of e+ w is
o.

We will define a map H∗
T(X) → C[Z] by constructing, for each element of H∗

T(X), a
function in C[Z] by its values. To ensure that it is well defined, we first show that Z is
reduced.

Remember that we defined a C×-action on X and t – see the comment below Definition
5.1.4. It turns out ([31, Proposition 1]) that if we consider the Białynicki-Birula minus-
decomposition on X, then the minus-cell Xo := W−

0 corresponding to o is open. In
other words, all the weights of the action around o are negative. Remember from Section
2.5.1 that t ∈ C× acts on C[Xo] via (t−1)∗. Therefore we can choose on Xo the affine
coordinates x1, x2, . . . , xn that are weight vectors of T and the values of weights on h are
positive integers a1, a2, . . . , an. Using these coordinates we model Xo as a vector space,
thus we can identify the tangent spaces to its points with Xo itself.

We also have the grading on C[t] defined by the action of C× on t, which by definition is
of weight −2. Therefore choosing coordinates v1, . . . , vr on t we have

C[t ×Xo] = C[v1, v2, . . . , vr, x1, x2, . . . , xn]

with deg vi = 2 (for i = 1, 2, . . . , r), deg xi = ai (for i = 1, 2, . . . , n). The tangent bundle
of Xo, as an affine space, is trivial, and the coordinates on Xo define its trivialisation,
hence we can speak of coordinates of Ve+t, cf. Remark 2.3.2. The vector field Ve+t is
vertical, i.e. only in the direction of X, hence it has n coordinates. We now prove the
following lemma, which for H = B2 was proven in [31, Theorem 4].

Lemma 5.1.10. The scheme Z is complete intersection and reduced and contained in
t ×Xo, hence affine. The ideal of Z in C[t ×Xo] = C[v1, v2, . . . , vr, x1, x2, . . . , xn] is then
generated by the vertical coordinates of the vector field Ve+t:

(Ve+t)1 , (Ve+t)2 , . . . , (Ve+t)n .

The degree of each (Ve+t)i is equal to ai + 2 and together with v1, v2, . . . , vr they form a
homogeneous regular sequence in C[v1, v2, . . . , vr, x1, x2, . . . , xn].

Proof. First, let us see that Z is contained in t × Xo. Let (w, x) ∈ Z. We then know
that x is a zero of the vector field Ve+w. For any t ∈ C× by Lemma 2.5.2 we have that
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H t · x is a zero of VAdHt (e+w). As AdHt(e+ w) = t2e+ w, this means that H t · x is a zero
of e+ t−2w. When we take t → ∞, this converges to e. Therefore limt→∞ H t · x is a zero
of e, hence equal to o. This means that x ∈ Xo.

Now we will prove that (Ve+t)i is homogeneous of degree ai + 2. We have

(Ve+t)i |t·(x,w) =
(︂
Ve+w/t2|Ht·x

)︂
i

=
(︂
H t

∗(VAd
Ht−1 (e+w/t2)|x)

)︂
i

=
(︂
H t

∗(Ve/t2+w/t2|x)
)︂
i

and H t acts on i-th coordinate of tangent space by multiplying it by t−ai , therefore(︂
H t

∗(Ve/t2+w/t2 |x)
)︂
i

= t−ai

(︂
Ve/t2+w/t2 |x

)︂
i

= t−ai−2 (Ve+t)i |(x,w),

hence the homogeneity follows. Since v1, v2, . . . , vr have degree 2, we have that the
sequence

(Ve+t)1 , (Ve+t)2 , . . . , (Ve+t)n , v1, v2, . . . , vr

consists of homogeneous functions on the (r + n)-dimensional affine space t ×Xo. There
are r + n of them and they have only one common zero. Therefore by [14, Proposition
4.3.4] they form a regular sequence. In particular, Z is the zero scheme of a regular
sequence (Ve+t)1, (Ve+t)2, . . . , (Ve+t)n, therefore it is complete intersection and hence also
Cohen–Macaulay, see Section 2.2.1.

Now we have to prove that Z is reduced. Let π : Z → t be the projection to the first
factor of t×X. By Theorem 5.1.2 we get an isomorphism π−1(treg) ∼= treg ×XT. The first
factor, as an open subscheme of affine space, is reduced. The fixed points of the torus are
also reduced by Theorem 2.5.6, therefore π−1(treg) is reduced.

Now note that π−1(treg) is an open dense subset in Z. It is open because treg is open in t.
To prove that it is dense, assume on the contrary that there exists x ∈ Z \ π−1(treg). Let
Y be its irreducible component in Z. As Z = π−1(treg) ∪ π−1(t \ treg) and both sets are
closed, by irreducibility Y has to be contained in one of them. As x is not contained in
the former, Y has to be contained in the latter, so that π(Y ) ⊂ t \ treg. As t \ treg is a
union of hyperplanes in t, the same argument shows that π(Y ) lies within one of them
(of dimension r − 1). Considering π|Y as mapping to π(Y ) and reducing if needed, we
get a dominant map between integral schemes. Note that as Z is Cohen–Macaulay, it is
equidimensional by [87, Theorem 17.6 and Theorem 6.5]. As t × {o} is closed in Z and of
dimension r, the dimension of Z is at least r. Therefore by the fiber dimension theorem
(see [63, Ex. 3.22(b)]) the fibers of π|Y are at least one-dimensional. But they are finite
by Lemma 3.4.5, so we get a contradiction.

Now as π−1(treg) is an open dense subset in Z, it contains its generic points, hence Z is
generically reduced. Using that Z is Cohen–Macaulay, by [55, Proposition 14.124] we get
that Z is reduced.

5.1.6 The homomorphism ρ

Let c ∈ H∗
T(X). In Section 5.1.5 we show that every element (w, x) of Z satisfies x = Mwζi.

Here Mw is some element of H depending on w and ζi is a uniquely determined fixed
point of T-action, which in fact can be determined as a limit of C× action on x. The
localisation c|ζi

of c to the torus-fixed point can be now seen as a polynomial on t, because
H∗

T(pt) = C[t]. We then define

ρ(c)(w, x) = c|ζi
(w). (5.5)
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This follows the idea of [28], where ρ is defined this way for B2. For any c ∈ H∗
T(X)

this defines a function ρ(c) on the set of closed points Z. This clearly gives a C[t]-
homomorphism between H∗

T(X) and the algebra of all C-valued functions on Z. We have
to first prove that for any c ∈ H∗

T(X) the image ρ(c) defines a regular function, which will
be unique by reducibility, proved in Lemma 5.1.10. Thus we will get a C[t]-homomorphism

ρ : H∗
T(X) → C[Z].

In general, assume that we are given an algebraic group H and an H-variety A. For any
H-linearised bundle E on A we may consider its equivariant Chern classes cH

k (E) ∈ H2k
H (A).

Let p ∈ A be a fixed point of H. From naturality of Chern classes we get cH
k (E)|p = cH

k (Ep),
where Ep is the fiber of E over p. This belongs to H∗

H(pt) ⊂ C[h] and for any y ∈ h we get

cH
k (E)|p(y) = TrΛkEp

(Λkyp). (5.6)

Here yp is the infinitesimal action of y ∈ h on Ep, which is a representation of H.

Lemma 5.1.11. Let E be an H-linearised vector bundle on X and let k be a nonnegative
integer. Then for any (w, x) ∈ Z we have

ρ(cT
k (E))(w, x) = TrΛkEx

(Λk(e+ w)x).

In particular, ρ(cT
k (E)) ∈ C[Z].

Proof. We have x = Mwζi for some ζi ∈ XT and Mw ∈ H. Moreover,

e+ w = AdMw(w + e′)

for some e′ ∈ hn that vanishes at ζi and commutes with w. Note that, as E is H-linearised,

TrΛkEx
(Λk(e+ w)x) = TrΛkE

M−1
w x

(Λk
(︂
AdM−1

w
(e+ w)

)︂
M−1

w x
) = TrΛkEζi

(Λk(w + e′)ζi
).

From (5.5) and (5.6) we have

ρ(cT
k (E))(w, x) = cT

k (E)|ζi
(w) = TrΛkEζi

(Λkwζi
).

Thus we have to prove that

TrΛkEζi
(Λk(w + e′)ζi

) = TrΛkEζi
(Λkwζi

).

But by the assumptions that [w, e′] = 0, w is semisimple and e′ is nilpotent, we get that
the sum w+e′ is the Jordan decomposition of AdM−1

w
(e+w) in the sense of Theorem 2.4.5.

Then by the naturality of the Jordan decomposition the derivative of the representation
StabH(ζi) → GL(Eζi

) preserves it. Therefore wζi
seen as an element of gl(Eζi

) is the
semisimple part of (w + e′)ζi

seen as an element of gl(Eζi
).

But for Jordan decomposition in the general linear group, the eigenvalues of the semisimple
part are the same as the eigenvalues of the decomposed element. Because traces of external
powers are polynomials in eigenvalues, this concludes the proof.

The following lemma is based on [31, Proposition 3], which proves it for B2.
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Lemma 5.1.12. The cohomology ring H∗(X) is generated, as a C-algebra, by Chern
classes of H-linearised vector bundles on X.

Proof. We know that the fundamental classes of the plus–cells form a basis of H∗(X), hence
their Poincaré duals form a basis of H∗(X). Now we use Baum–Fulton–MacPherson’s
Grothendieck–Riemann–Roch theorem (see [49, Theorem 18.3, (5)]). We get that for any
plus-cell Wi ∈ X the homology class (ch(Wi) td(Xi)) ∩ [X] is equal to the sum of [Wi]
and lower-degree terms. Therefore ch(Wi) is equal to the sum of the dual class of [Wi]
and higher-degree terms. Therefore Chern characters of the structure sheaves of plus–cells
generate H∗(X).

As the plus–cells are H-stable by Theorem 5.1.6, we get that ch is surjective when restricted
to the Grothendieck group of H-equivariant coherent sheaves. By [105, Corollary 5.8] it is
generated by the classes of H-equivariant vector bundles and the conclusion follows.

Remark 5.1.13. We did not use the regularity of the action in the proof. In fact, it was
enough to know that the fixed points of T are isolated. One could also argue the following
in such generality. By Theorem 2.4.8 a linear solvable group over C is split, i.e. admits a
composition series with quotients equal to Ga. Then the restriction K0

H(X) → K0
T(X) is an

isomorphism [88, Corollary 2.16] and the restriction K0
T(X) → K0(X) is a surjection [88,

Proposition 3.1]. The Chern character is an isomorphism from K0(X) ⊗ C to A∗(X) ⊗ C
[49, Theorem 18.3] and the cycle class map A∗(X) → H∗(X,Z) is an isomorphism due to
the paving given by Białynicki-Birula decomposition [49, Example 19.1.11]. Therefore the
(non-equivariant) Chern character gives a surjection K0

H(X) → H∗(X,C).

Lemma 5.1.14. The equivariant cohomology H∗
T(X) is generated, as a C[t]-algebra, by

T-equivariant Chern classes of H-equivariant vector bundles on X.

Proof. Recall that I denotes the maximal ideal of C[t] cutting out the zero point. Since
X is equivariantly formal, we have an exact sequence

0 → IH∗
T(X) → H∗

T(X) → H∗(X) → 0.

By Lemma 5.1.12 we get that the C-algebra H∗(X) is generated by Chern classes of
H-linearised vector bundles on X. Then from graded Nakayama lemma (see Corollary
2.8.2) the C[t]-algebra H∗

T(X) is generated by their equivariant Chern classes.

This together with Lemma 5.1.11 gives

Corollary 5.1.15. The map ρ is a homomorphism of C[t]-algebras H∗
T(X) → C[Z].

5.1.7 Proof of isomorphism

Proof of Theorem 5.1.5. Clearly ρ preserves the grading. For injectivity, note that for
any c ∈ H∗

T(X), we can extract from ρ(c) the localisations c|ζi
for all i – as on the regular

locus the function ρ(c) is defined by all those localisations. Recall that X is equivariantly
formal (5.2). Therefore we get injectivity of ρ by injectivity of localisation on equivariantly
formal spaces [54, Theorem 1.6.2].
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Hence to prove that the map is an isomorphism, it suffices to check that the Poincaré series
of the two sides coincide. Since X is equivariantly formal, H∗

T(X) is a free C[t]-module
and

H∗
T(X)/IH∗

T(X) ∼= H∗(X).
Therefore

PH∗(X)(t) = PH∗
T(X)(t)(1 − t2)r. (5.7)

On the other hand, from Lemma 5.1.10 we know that the generating set of I is a regular
sequence in C[Z], hence

PC[Z]/IC[Z](t) = PC[Z](t)(1 − t2)r. (5.8)

Now C[Z]/IC[Z] is the zero scheme of the vector field given by e. In addition, the
action of the torus H t satisfies AdHt(e) = t2e. Therefore by Theorem 4.2.4 we have
C[Z]/IC[Z] ∼= H∗(X) and in particular

PC[Z]/IC[Z](t) = PH∗(X)(t).

Therefore, from (5.7) and (5.8) we get

PC[Z](t) = PH∗
T(X)(t).

Remark 5.1.16. From Theorem 5.1.5 we get that C[Z] is a finitely generated free module
over C[t]. Therefore the map π : Z → t is finite flat.
Remark 5.1.17. The theorem can in fact be proved for a slightly larger class of solvable
groups. We need H to be a connected linear algebraic solvable group, and as before (e, h)
to be an integrable b(sl2)-pair, but it does not necessarily have to be principal. For the
proof of Theorem 5.1.6 we need to assume α(h) > 0 for any root α of H. However, even
this assumption can be made unnecessary as we can consider the subgroup H′ generated
by T and the additive group generated by e. By [19, Theorem 7.6] it is algebraic and its
Lie algebra is generated by t and e. As Lie bracket of h-weight vectors adds the weights,
we clearly see that all the weights on H′ are nonnegative multiples of 2.

Even if we assume that H is generated by T and the additive group generated by e, it
does not follow that e is regular. Take for example

H =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝
t/u2 ∗ ∗ ∗

0 t ∗ ∗
0 0 u ∗
0 0 0 u/t2

⎞⎟⎟⎟⎠
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ t, u ∈ C×

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,
where the asterisks are understood to stand for any complex numbers. We choose

h =

⎛⎜⎜⎜⎝
3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

⎞⎟⎟⎟⎠ , e =

⎛⎜⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎟⎠ .
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The maximal torus is two-dimensional and the centraliser of e is three-dimensional, hence
e is not regular. However together with the diagonal matrices it generates h as a Lie
algebra.

In all our examples of regular actions, we only consider principally paired groups and this
extension seems to only include very exotic cases. Therefore we formulate our results in
terms of principally paired groups.

5.1.8 Functoriality
We prove now that Theorem 5.1.5 is actually functorial, with respect to both the group
and the variety. We prove the latter first.

Proposition 5.1.18. Assume that X and Y are two H-regular varieties and ϕ : X → Y is
an H-equivariant morphism between them. Let ZX

∼= SpecH∗
T(X) and ZY

∼= SpecH∗
T(Y )

be the schemes constructed above for X and Y , respectively. The map (id, ϕ) : t×X → t×Y
induces a morphism ZX → ZY and the following diagram commutes:

H∗
T(Y ) H∗

T(X)

C[ZY ] C[ZX ]

ϕ∗

ρY ρX

(id,ϕ)∗

.

In other words, ρ is a natural isomorphism between the functors H∗
T and C[Z] on the

category of H-regular varieties.

Proof. Consider a class c ∈ H∗
T(Y ). We want to show that for any (w, x) ∈ ZX the

functions ρX(ϕ∗(c)) and (id, ϕ)∗(ρY (c)) take the same value on (w, x). We know from
Section 5.1.5 that x = Mwζ, where Mw is some element of H depending on w, and ζ is one
of T-fixed points of X. Obviously then ϕ(ζ) is a T-fixed point in Y and ϕ(x) = Mwϕ(ζ).
We have then

(id, ϕ)∗(ρY (c))(w, x) = ρY (c)(w, ϕ(x)) = c|ϕ(ζ)(w).

On the other hand
ρX(ϕ∗(c))(w, x) = ϕ∗(c)|ζ(w).

Now the equality of the above follows from functoriality of H∗
T and commutativity of

{ζ} {ϕ(ζ)}

X Y

ιζ

ϕ

ιϕ(ζ)

ϕ

.

Proposition 5.1.19. Assume that H1, H2 are solvable principally paired groups. Let
Ti ⊂ Hi be the corresponding maximal tori and ei ∈ (hi)n the corresponding nilpotent
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elements in their Lie algebras. Let ψ : H1 → H2 be a homomorphism of algebraic groups
satisfying

ψ(T1) ⊂ T2, ψ∗(e1) = e2.

Assume that H2 acts regularly on a smooth projective variety X. Then the map ψ together
with the H2-action induce an action of H1 on X, which is also regular. In turn, the map
(ψ∗, id) induces a morphism ZH1 → ZH2 and the following diagram commutes:

H∗
T2(X) H∗

T1(X)

C[ZH2 ] C[ZH1 ]

ψ∗

ρH2 ρH1

(ψ∗,id)∗

.

Proof. As ψ∗(e1) = e2, the group H1 clearly acts on X regularly. Obviously if (w, x) ∈ ZH1 ,
then e1 + w vanishes at x, and therefore ψ∗(e1 + w) = e2 + ψ(w) vanishes at x, hence
(ψ∗, id) maps ZH1 to ZH2 .
Now let c ∈ H∗

T2(X) and (w, x) ∈ ZH1 . We want to prove that

(ψ∗, id)∗(ρH2(c))(w, x) = ρH1(ψ(c))(w, x).

We know that x = Mwζ for some Mw ∈ H1 depending on w and an isolated T1-fixed point
ζ. Then by Lemma 2.3.4 the point ζ is fixed by T2. Therefore (cf. Remark 5.1.8) we have

(ψ∗, id)∗(ρH2(c))(w, x) = ρH2(c)(ψ∗(w), x) = c|ζ(ψ∗(w))

and
ρH1(ψ(c))(w, x) = ψ(c)|ζ(w).

Now the equality follows from commutativity of

H∗
T2(pt) H∗

T1(pt)

C[t2] C[t1]

ψ∗

∼= ∼=

(ψ∗)∗

.

5.1.9 Examples and comments
We illustrate Theorem 5.1.5 with a few examples.
Example 5.1.20. We continue Example 3.4.4 which already appears in [28]. The point
o = [1 : 0 : · · · : 0] is the unique zero of e. If [z0 : z1 : · · · : zn] are the homogeneous
coordinates of Pn, then the scheme Z lies completely in the affine chart Xo of o, with
affine coordinates xi = zi/z0, for i = 1, 2, . . . , n. We have

Vh|x1,...,xn = (−2x1,−4x2, . . . ,−2nxn)

and
Ve|x1,...,xn = (x2 − x1x1, x3 − x1x2, x4 − x1x3, . . . , xn − x1xn−1,−x1xn).
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Figure 5.1: SpecH∗
C×(P3).

Then

Ve+vh|x1,...,xn =
(x2 − x1(x1 + 2v), x3 − x2(x1 + 4v), . . . , xn − xn−1(x1 + 2(n− 1)v),−xn(x1 + 2n)).

If we consider the zero scheme Z of e+vh within t×Xo, then the coordinates x2, . . . , xn are
clearly determined by x1 and v and we can identify Z with the subscheme of SpecC[v, x1]
cut out by the equation

x1(x1 + 2v)(x1 + 4v) . . . (x1 + 2nv) = 0.

In other words, H∗
C×(Pn) = C[v, x]/

(︂
x(x+2v)(x+4v) . . . (x+2nv)

)︂
with deg v = deg x = 2.

See Figure 5.1.
Remark 5.1.21. Clearly a product X × Y of two varieties with a regular H-action is also
regular and its equivariant cohomology scheme can be represented as a fiber product, i.e.
H∗

T(X, Y ) = H∗
T(X) ⊗H∗

T
H∗

T(Y ).

In particular the product P1 × P1 is regular under the action of SL2, hence also of B2. It
embeds in P3 via the Segre embedding. The action of SL2 on P3 from Example 3.4.4 is
also regular. However the Segre embedding cannot be SL2- or even B2-equivariant with
respect to those two actions. In fact, using Theorem 5.1.5 we can prove a more general
statement:

Corollary 5.1.22. Let a principally paired solvable group H act regularly on a smooth
projective variety X. Assume that Z is its closed, smooth, H-invariant subvariety. Then
the induced map on cohomology rings

f ∗ : H∗(X,C) → H∗(Z,C)

is surjective.

Proof. Clearly Z is also an H-regular variety. From Theorem 5.1.5 we have H∗
T(X) =

C[ZX ] and H∗
T(Z) = C[ZZ ] where ZX and ZZ are the zero schemes constructed for X

and Z according to Definition 5.1.4. But clearly from the definition we see that ZZ is
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the (reduced) intersection ZX ∩ Z, hence a closed subvariety of ZX . This means that
the induced map C[ZX ] → C[ZZ ] is surjective. By Proposition 5.1.18 this is the same
as the map induced on equivariant cohomology. By equivariant formality we get the
non-equivariant cohomology by tensoring with C over H∗

T, and this operation is right-exact,
hence it preserves surjectivity.

In particular, as h2(P1×P1) = 2, the product P1×P1 cannot be embedded B2-equivariantly
in any Pm with regular action.

Figure 5.2: Two different views of SpecH∗
C×(Gr(2, 4)). Note that all the components

project bijectively to the v axis.

Example 5.1.23. In Example 3.4.4 we considered an action of SL2(C) on any Cn. We can
also use it to define actions on partial or full flag varieties. Let us consider the action
of the upper Borel subgroup of SL2 on C4 and the induced action on the Grassmannian
Gr(2, 4) of two-planes in C2. We can identify it with SL4(C)/P, where P is the parabolic
group of matrices of the form ⎛⎜⎜⎜⎝

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

⎞⎟⎟⎟⎠ .
The only zero of e is o = span(e1, e2) and in the representation above Xo can be thought
of as the set of classes of matrices of the form⎛⎜⎜⎜⎝

1 0 ∗ ∗
0 1 ∗ ∗
x1 y1 ∗ ∗
x2 y2 ∗ ∗

⎞⎟⎟⎟⎠ .
Then if we write down the coordinates x1, y1, x2, y2 in this order, one checks that

Ve|x1,y1,x2,y2 = (x2 − x1y1,−x1 − y2
1 + y2,−x1y2,−x2 − y1y2)
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and
Vh|x1,y1,x2,y2 = (4x1, 2y1, 6x2, 4y2).

Therefore the equations of Z in C[v, x1, y1, x2, y2] are

4vx1 +x2 −x1y1 = 0, 2vy1 −x1 −y2
1 +y2 = 0, 6vx2 −x1y2 = 0, 4vy2 −x2 −y1y2 = 0.

We can determine x2 and y2 from the first two equations and plugging in to the other
two, we get

x1(x1 + 24v2 − 8vy1 + y2
1) = 0, (y1 − 4v)(2x1 − 2vy1 + y2

1) = 0.

This gives six one-parameter families of solutions (one for each torus-fixed point):

(x1 = 0, y1 = 0); (x1 = 0, y1 = 2v); (x1 = −8v2, y1 = 4v);
(x1 = 0, y1 = 4v); (x1 = −12v2, y1 = 6v); (x1 = −24v2, y1 = 8v);

see Figure 5.2.

Figure 5.3: SpecH∗
T(P2).

Example 5.1.24. Let us now switch to groups of higher rank. As in Example 3.4.3, we can
consider the regular nilpotent

e =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
... ... ... ... . . . ...
0 0 0 0 . . . 1
0 0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
in SLn+1. We have the regular action of SLn+1 on Pn, which in particular restricts to a
regular action of its upper Borel subgroup. We continue using notation from Example
5.1.1 for the elements of t. As in Example 5.1.20, we have

Ve|x1,...,xn = (x2 − x1x1, x3 − x1x2, x4 − x1x3, . . . , xn − x1xn−1,−x1xn).
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For the element (v1, v2, . . . , vn) ∈ Cn, which corresponds to the diagonal matrix

diag(0, v1, v2, . . . , vn) − v1 + v2 + · · · + vn
n+ 1 In+1,

the associated vector field at (x1, x2, . . . , xn) has coordinates equal to (v1x1, v2x2, . . . , vnxn).
Hence

Ve+(v1,v2,...,vn)|x1,...,xn =
(x2 − x1(x1 − v1), x3 − x2(x1 − v2), . . . , xn − xn−1(x1 − vn−1),−xn(x1 − vn)).

Thus we can determine x2, x3, . . . , xn from x1 and v1, v2, . . . , vn. The scheme Z can be
then realised within SpecC[v1, v2, . . . , vn, x1] and cut out by one equation

x1(x1 − v1)(x1 − v2) . . . (x1 − vn) = 0.

This scheme consists of n + 1 hyperplanes. Their intersections, when projected on the
(v1, . . . , vn)-plane, form the toric fan of Pn. The functions on the scheme consist of n+ 1
polynomials, one for each component, that agree on the intersections. This agrees with the
classical description of equivariant cohomology of toric variety as piecewise polynomials
on the fan, as e.g. in [25, section 2.2]. For n = 2 the scheme is depicted in Figure 5.3.
Example 5.1.25. We can extend the previous example to full flag varieties. Take for
example the variety F3 = SL3 /B of full flags in C3. The only zero of e is the flag
span(e1) ⊂ span(e1, e2) and the cell Xo in this case consists of the flags represented by
matrices of the form ⎛⎜⎝1 0 ∗

a 1 ∗
b c ∗

⎞⎟⎠ ∈ SL3(C).

One finds that
Ve|a,b,c = (−a2 + b,−ab,−b+ ac− c2).

If, as before, we consider a pair w = (v1, v2) ∈ C2 as an element of t, then we have

Vw|a,b,c = (v1a, v2b, (v2 − v1)c).

Hence the equations for Ve+w = 0 are

−a2 + b+ v1a = 0, −ab+ v2b, −b+ ac− c2 + (v2 − v1)c.

Plugging b from the first one into the others yields two equations

a(a− v1)(a− v2) = 0, −a2 + av1 + ac− c2 − cv1 + cv2 = 0.

By splitting the first equation into cases, we easily get the six families of solutions (one
for each coordinate flag):

(a = 0, c = 0); (a = v1, c = 0); (a = v1, c = v2);
(a = v2, c = v2); (a = 0, c = −v1 + v2); (a = v2, c = −v1 + v2).

Remark 5.1.26. One can note in the above examples that the scheme Z always consists of
finitely many copies of the base t. The essential information is then contained not in the
shape of the components, but in the way they intersect. In fact, we can prove the general
statement:
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5. Zero scheme as the spectrum of equivariant cohomology

Lemma 5.1.27. Assume that a solvable principally paired group H acts regularly on a
smooth projective variety X. Then every irreducible component of Z is mapped isomor-
phically to t. Moreover, the irreducible components are indexed by the T-fixed points in
X.

Proof. We proved in Lemma 5.1.10 that Z ∩ π−1(treg) ≃ treg ×XT and it is dense in Z.
Therefore for each ζi ∈ T we have the subset

Ai = {(w,Mwζi)|w ∈ treg} ⊂ Z ∩ π−1(treg)

and Z = ⋃︁
Ai. Here Mw are the elements defined by Theorem 5.1.2.

We will prove that each Ai maps isomorphically to t. Note that it is a closed subscheme
of Z, which is projective over t. Therefore its image in t is closed. As it contains treg, it
has to be the whole t. The projection Ai → t is a birational morphism with finite fibers.
Hence by Zariski’s main theorem it is an isomorphism to an open subscheme of t. But we
have seen that its image is the whole t, hence Ai → t is an isomorphism.

We showed that Z is a finite union of irreducible subspaces Ai isomorphic to t – therefore
they are its irreducible components.

Example 5.1.28. Another natural family of examples are the Bott–Samelson resolutions
of Schubert varieties ([21],[60],[43]). We first recall their construction here. Let G be a
semisimple group of rank r, with simple roots α1, α2, . . . , αr. The reflections s1, s2, . . . ,
sr in the simple roots generate the Weyl group W of G. Let (ei, fi, hi) be an sl2-triple
corresponding to αi. For any sequence ω = (αi1 , αi2 , . . . , αil) of simple roots we can
construct the Bott–Samelson variety as follows:

Xω = Pi1 ×B Pi2 ×B · · · ×B Pil/B,
where B is the Borel subgroup of G and Pi is the minimal (non-Borel) parabolic subgroup
corresponding to the root αi. Here B acts on Pi both on left and right, hence we can
define the mixed quotients as above, and the last quotient is by the right B-action on
Pil . The variety admits the multiplication map Xω → G/B. If ω is a reduced word
representing an element ω ∈ W, then this map is a resolution of the Schubert variety
Xω = BωB/B. The Borel subgroup B acts on the Bott–Samelson variety on the left.

Lemma 5.1.29. The Bott–Samelson resolutions are regular B-varieties.

Proof. Assume that an element x ∈ Xω represented by (g1, g2, . . . , gl) is a zero of the
vector field defined by the regular nilpotent e. As e generates an additive subgroup exp(te)
inside B, every zero of e is fixed by this subgroup, and in particular by b1 = u = exp(e).
This means that in the Bott–Samelson variety

[(b1g1, g2, g3, . . . , gl)] = [(g1, g2, g3, . . . , gl)] (5.9)

First, this means that b1g1 = g1b2 for some b2 ∈ B, hence b1 ∈ g1Bg−1
1 . As b1 is a regular

unipotent element, there is only one Borel subgroup, namely B, which contains b1 (see the
discussion in Example 3.4.3). As NG(B) = B, we have g1 ∈ B. From b1g1 = g1b2 we have
that b2 is conjugate to b1, hence it is also a regular unipotent in B. From (5.9) we have

[(b2g2, g3, . . . , gl)] = [(g2, g3, . . . , gl)]
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in the Bott–Samelson variety corresponding to the sequence (αi2 , . . . , αil). Applying the
same reasoning, we get inductively that g1, g2, . . . , gl ∈ B, hence [(g1, g2, g3, . . . , gl)] =
[(1, 1, . . . , 1)] in Xω.1

This means that using Theorem 5.1.5 above we can determine H∗
T(Xω), where T is the

maximal torus inside B. The open Białynicki-Birula cell Xo consists of the classes

[(exp(x1fi1), exp(x2fi2), . . . , exp(xlfil))]x1,x2,...,xl∈C

and we would like to find the scheme Z inside Xo × t. We need to determine the
infinitesimal action of B on that cell. We will proceed coordinate by coordinate. Note
that for i ∈ {1, 2, . . . , l} the group Pi contains {exp(t · fi)|t ∈ C} · B as an open dense
subset. Therefore for any x ∈ C there exists an open neighbourhood U ⊂ B of 1B such
that for all g ∈ U we have

g · exp(xfi) = exp(b(g)fi)h(g)

for some maps b : U → C and h : U → B with b(1) = x and h(1) = 1. The two sides
of the equality are functions of g. Let us differentiate them at g = 1 in the direction of
y ∈ b. We get

y · exp(xfi) = exp(xfi) · (Db|1(y)fi +Dh|1(y)),
where on the left hand side the dot denotes the right translation by exp(xfi) and on the
right hand side it analogously denotes the left translation. Therefore

Db|1(y)fi +Dh|1(y) = Adexp(−xfi)(y).

Now let y = e+ w, where w ∈ T. Then

Adexp(−xfi)(y) = Adexp(−xfi)(e) + Adexp(−xfi)(w) = (e+ xhi − x2fi) + (w − αi(w)xfi)
= (−αi(w)x− x2)fi + (e+ w + xhi).

Thus we get Db|1(y) = −αi(w)x− x2 and Dh|1(y) = e+w+ xhi. Hence the infinitesimal
action on Xω in direction e+ w yields the vector of first coordinate −αi1(w)x1 − x2

1 and
induces the infinitesimal action of e+ w + x1hi1 on the second coordinate. We can apply
this procedure inductively and get that the j-th coordinate is acted upon by

e+ w +
j−1∑︂
k=1

xkhik

and the corresponding coordinate of the vector field Ve+w is

−
j−1∑︂
k=1

αij (hik)xkxj − αij (w)xj − x2
j .

Therefore if we define the numbers bjk = αij (hik), we obtain the following presentation of
the equivariant cohomology ring:

H∗
T(Xω) = C[t][x1, x2, . . . , xl]/

⎛⎝x2
j = −

∑︂
k<j

bjkxkxj − αij (w)xj

⎞⎠ ,
1The author is grateful to Jakub Löwit for this argument.
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where w denotes the t coordinate. Note that e.g. for α1, . . . , αr being the standard simple
roots of SLn, those numbers vanish whenever |ij − ik| > 1.

The variety has 2l torus-fixed points and hence the equivariant cohomology ring is a free
module over C[t] of rank 2l. An additive basis consists of all the square-free monomials in
x1, x2, . . . , xl. We recover then the results obtained e.g. in [21, Proposition 4.2] or [111,
Proposition 3.7].

5.2 Reductive and arbitrary principally paired
algebraic groups

5.2.1 Reductive groups
In this section, we will make a transition from solvable groups to reductive groups. We
do that by restricting to Borel subgroups and utilizing Theorem 5.1.5.

Let then G be a complex reductive algebraic group of rank r. We assume that e ∈
g = Lie(G) is a regular nilpotent element. Let f, h ∈ g denote the remaining elements
of an sl2-triple (e, f, h) (see the discussion in Section 3.2). In fact, all the regular
nilpotents are conjugate by [82, Section 3, Theorem 1]. Hence, we can actually assume
e = x1 + x2 + · · · + xs, as in Example 5.1.1. In particular, h is semisimple and contained
in the unique Borel subalgebra b of g containing e. It integrates to a map H t : C× → G
with finite kernel. We denote by S = e + Cg(f) the corresponding Kostant section (cf.
Theorem 3.3.1). We have C[S] = C[g]G = C[t]W = H∗

G(pt). The goal will be to prove the
following result.

Theorem 5.2.1. Let G be as above and assume that G acts on a connected smooth
projective variety X regularly. Let ZG be the closed subscheme of S ×X defined as the
zero set of the total vector field (Definition 2.5.1) restricted to S × X. Then ZG is an
affine, reduced scheme and H∗

G(X) ∼= C[ZG] as graded C[S]-algebras, where the grading
on right-hand side is defined by the action of C× on S via 1

t2
AdHt and on X via H t. In

other words, ZG = SpecH∗
G(X), S = SpecH∗

G and the pullback of functions along the
projection ZG → S yields the structure map H∗

G → H∗
G(X), so we have the following

diagram.

ZG SpecH∗
G(X;C)

S SpecH∗
G.

π

∼=

∼=

Moreover, the isomorphism H∗
G(X) ∼= C[ZG] of graded C[S]-algebras is functorial both

in X and G. The admissible morphisms are those that map a G1-regular variety X to
a G2-regular variety Y in a G1-equivariant way, where G1 → G2 is a homomorphism
between two reductive algebraic groups which maps the fixed principal sl2-triple to the
other fixed principal sl2-triple.
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ZG1(X) SpecH∗
G1(X;C)

ZG2(Y ) SpecH∗
G2(Y ;C).

∼=

∼=

Note that from Theorem 2.6.3 H∗
G(X) = H∗

T(X)W, where T is the maximal torus and
W = NG(T)/T is the Weyl group of G. Therefore, we will be able to make use of the
result for solvable groups, i.e. Theorem 5.1.5.

5.2.2 Motivating example: G = SL2(C)
For G = SL2(C) we can choose the canonical e, f , h:

e =
(︄

0 1
0 0

)︄
, f =

(︄
0 0
1 0

)︄
, h =

(︄
1 0
0 −1

)︄
.

Then we get S = {e+ vf |v ∈ C}. Again, let us adapt convention from Example 5.1.1 for
the basis of t, i.e. a number v ∈ C will denote −vh/2. We know that H∗

T(X) = C[ZB2 ],
where ZB2 is defined as in Definition 5.1.4 for solvable (Borel) subgroup B2 of SL2(C)
consisting of upper triangular matrices. Let us now see how the Weyl group – in this
case Σ2 = {1, ϵ} – acts on H∗

T(X). For any ζi ∈ XT we have the following commutative
diagram

H∗
T(X) H∗

T(X)

H∗
T(ϵζi) H∗

T(ζi)

ϵ∗

ι∗ϵζi
ι∗ζi

ϵ∗

.

Note that in the bottom line we have the (contravariant) action of W on H∗
T(pt) ∼= C[t],

which is defined by the (covariant) adjoint action of W on t. In the case of SL2 the element
ϵ acts on t by v ↦→ −v.

Therefore we get that for any c ∈ H∗
T(X) and any T-fixed point ζi we have

(ϵ∗c)|ζi
= (c|ϵζi

) ◦ ϵ,

where ϵ is here seen as a map t → t. This determines ϵ∗c completely, as the restriction
H∗

T(X) → ⨁︁
H∗

T(ζi) is injective. Hence when we apply the isomorphism ρ : H∗
T(X) →

C[ZB2 ], we will get
ρ(ϵ∗c)(w,Mwζi) = ρ(c)(ϵw,Mϵwϵζi).

We get an algebra homomorphism C[ZB2 ] → C[ZB2 ], which has to come from a morphism
ZB2 → ZB2 . This morphism sends (w,Mwζi) to (ϵw,Mϵwϵζi).
We will now look at the adjoint action of elements of the form

exp(sf) =
(︄

1 0
s 1

)︄
∈ SL2 .
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We have

Adexp(tf)(e+ th) = e+ t2f (5.10)
Adexp(2tf)(e+ th) = e− th. (5.11)

From (5.11) and Lemma 2.5.2 we infer that the map

ψϵ : (v, x) ↦→ (−v, exp(−vf)x)

is an isomorphism of ZB2 (note that in our choice of basis the number v denotes −vh/2).
We claim that it is equal to the above (i.e. it is dual to ρ ◦ ϵ∗ ◦ ρ−1). Clearly the action
on the first factor agrees. Now we have

exp(−vf)(Mvζi) =
(︄

1 0
−v 1

)︄(︄
1 1/v
0 1

)︄
ζi

and we get

M−1
−v exp(−vf)(Mvζi) =

(︄
1 1/v
0 1

)︄(︄
1 0

−v 1

)︄(︄
1 1/v
0 1

)︄
ζi =

(︄
0 1/v

−v 0

)︄
ζi = ϵζi.

Therefore
ψϵ(v,Mvζi) = (−v, exp(−vf)(Mvζi)) = (−v,M−vϵζi)

and indeed
ρ(ϵ∗c)(v, x) = ρ(c)(ψϵ(v, x)).

Thus SpecH∗
SL2(C)(X) is the GIT quotient of ZB2 over this action.

Now from (5.10) we get that the map ϕ : (v, x) ↦→ (v, exp(−vf/2)x) is an isomorphism
between ZB2 and Z ′ = {(v, x) ∈ C × X : (Ve+v2/4f)|x = 0}. Therefore we might as well
look for the GIT quotient of Z ′ by ϕ ◦ ψϵ ◦ ϕ−1. We get

ϕ ◦ ψϵ ◦ ϕ−1(v, x) = ϕ ◦ ψϵ(v, exp(vf/2)x) = ϕ(−v, exp(−vf/2)x) = (−v, x).

The GIT quotient of Z ′ = {(v, x) : (Ve+v2/4f)|x = 0} by this action is clearly isomorphic
to ZG = {(t, x) ∈ C ×X : (Ve+tf )|x = 0}.

5.2.3 General case
We will want to mimic the proof for SL2 in the general reductive case. Let ZB be the
scheme defined in Definition 5.1.4, for the Borel subgroup B of G. We need the following:

• Regular maps A : t → G and χ : t → S that satisfy

AdA(w)(e+ w) = χ(w),

so that (idt, A(w)) maps ZB to Z ′, where

Z ′ = {(w, x) ∈ t ×X : Vχ(w)|x = 0}.

• Moreover we want χ to be W-invariant and induce an isomorphism t//W → S, so
that we can construct ZG as a quotient of Z ′.
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5.2. Reductive and arbitrary principally paired algebraic groups

• We want to realise the Weyl group action on ZB by action on the second factor, i.e.
for each η ∈ W we want to define a map Bη : t → G such that

(w, x) ↦→ (η(w), Bη(w) · x)

is the action of the Weyl group.

• If we conjugate above with the isomorphism ZB → Z ′, we want to get a map that
fixes the X-coordinate. In other words,

A(ηw)Bη(w)A−1(w) = 1,

i.e. Bη(w) = A(ηw)−1A(w).

We will now formalise those ideas. First, let B be the unique Borel subgroup of G
containing the regular nilpotent e (cf. Section 3.2). We denote by U the corresponding
maximal unipotent subgroup and by B−, U− the opposite Borel and unipotent subgroup.
Let b, u, b−, u− denote the corresponding Lie algebras. As above, by ZB ⊂ t × X we
denote the zero scheme defined by the action of B, which by Theorem 5.1.5 is isomorphic
to SpecH∗

T(X). First, we get the elements A(w) and χ(w) as in (3.3). In other words,
from Lemma 3.3.8 we have that the map

Ad−(−) : U− × S → e+ b−

is an isomorphism. We consider the preimage of e+ t and denote by A(w) ∈ U−, χ(w) ∈ S
the elements such that

AdA(w)(e+ w) = χ(w). (5.12)

We know then from Lemma 2.5.2 and (5.12) that the map ϕ defined as

ϕ(w, x) = (w,A(w)x)

is an isomorphism from

ZB = {(w, x) ∈ t ×X : Ve+w|x = 0}.

to
Z ′ = {(w, x) ∈ t ×X : Vχ(w)|x = 0}.

Moreover, let
Bη(w) = A(ηw)−1A(w)

for any η ∈ W, w ∈ T. Then by Proposition 3.3.10 the map ψη defined as

ψη = ϕ−1 ◦ (η, id) ◦ ϕ,

i.e. ψη(w, x) = (ηw,Bη(w)x), is an automorphism of ZB. Here η is seen as a map t → t.

Lemma 5.2.2. The map ψη defines the action of W on ZB. In other words, W acts on
the right on H∗

T(X) and the dual left action on ZB = SpecH∗
T(X) is defined by ψ.
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Proof. For any η ∈ W we have the commutative diagram

H∗
T(X) H∗

T(X)

H∗
T(ηζi) H∗

T(ζi)

η∗

ι∗ηζi
ι∗ζi

η∗

.

In the bottom row both entries are isomorphic to C[t] and the map is precomposition
with η : t → t. Therefore for any c ∈ H∗

T(X) and any T-fixed point ζi we get

(η∗c)|ζi
= (c|ηζi

) ◦ η.

This determines η∗c completely, as the restriction H∗
T(X) → ⨁︁

H∗
T(ζi) is injective. We

want to determine what this action of W induces on ZB. The action of W on ZB, which
we will denote by η ↦→ η∗, has to satisfy the equality

ρ(c)(η∗(w, x)) = ρ(η∗(c))(w, x).

From the proof of Lemma 5.1.10 we know that ZB ∩ (treg ×X) is dense in ZB. Therefore
to determine η∗, it is enough to determine its values η∗(w, x) for w regular. In this case if
(w, x) ∈ ZB, then, by Section 5.1.5, we have that w = Mwζi, where Mw ∈ B is such that
AdMw(w) = e+ w. Then ρ(c)(w, x) = c|ζi

(w). Hence

ρ(η∗(c))(w, x) = η∗(c)|ζi
(w) = (c|ηζi

)(ηw) = ρ(c)(ηw,Mηwηζi).

Thus
η∗(w,Mwζi) = (ηw,Mηwηζi).

We claim that η∗ = ψη, i.e. Bη(w)Mwζi = Mηwηζi. We have to prove that Cη,w =
M−1

ηwBη(w)Mw sends ζi to ηζi.

Note that

AdCη,w(w) = AdM−1
ηwBη(w)Mw

(w) = AdM−1
ηwA

−1
ηwAwMw

(w) = AdM−1
ηwA

−1
ηwAw

(e+ w) =
= AdM−1

ηwA
−1
ηw

(χ(w)) = AdM−1
ηwA

−1
ηw

(χ(ηw)) = AdM−1
ηw

(e+ ηw) = ηw.

Therefore for any representative η̃ ∈ NG(T) of η we have

η̃−1Cη,w ∈ CH(w).

As w is regular, its centraliser within h is just t. It is the Lie algebra of CG(w), which
is connected by [103, Corollary 3.11], hence equal to T. Therefore η̃−1Cη,w ∈ T, hence
Cη,w represents the class of η in NG(T)/T. Thus Cη,w sends ζi to ηζi, as we wanted to
prove.

Proof of Theorem 5.2.1. We saw above that the map ϕ defined as ϕ(w, x) = (w,A(w)x)
is an isomorphism from ZB to Z ′ = {(w, x) ∈ t×X : Vχ(w)|x = 0}. Then we can conjugate
the maps ψη with this isomorphism, hence getting maps ϕ ◦ ψη ◦ ϕ−1 : Z ′ → Z ′. We have

ϕ ◦ ψη ◦ ϕ−1(w, x) = ϕ ◦ ψη(w,A(w)−1x) = ϕ(ηw,Bη(w)A(w)−1x)
= (ηw,A(ηw)Bη(w)A(w)−1x) = (ηw, x). (5.13)
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The last equality follows from the definition Bη(w) = A(ηw)−1A(w). By Lemma 5.2.2
the map ϕ ◦ ψη ◦ ϕ−1 gives the action of W on Z ′ ∼= ZB ∼= SpecH∗

T(X).
We have H∗

G(X) = H∗
T(X)W and therefore SpecH∗

G(X) = SpecH∗
T(X)//W = Z ′//W. But

we know from (5.13) that W acts only on the t-coordinate of Z ′ and moreover from
Proposition 3.3.10 the map χ induces an isomorphism t//W → S. Therefore

SpecH∗
G(X) = Z ′//W = {(w, x) ∈ t ×X : Vχ(w)|x = 0}//W

= {(v, x) ∈ S ×X : Vv|x = 0} = ZG.

The zero scheme ZG is reduced because Z ′ ∼= ZB is reduced from Lemma 5.1.10. The
agreement of C[S]-algebra structures follows from commutativity of the diagram

SpecH∗
T(X) = ZB Z ′ SpecH∗

G(X) = ZG

SpecH∗
T = t SpecH∗

G = t//W

∼=

πB

//W

πG

//W

and the analogous statement for B in Theorem 5.1.5.
It remains to show that the grading agrees on the two sides. We know from Theorem 5.1.5
that the grading in the solvable case is defined by the weights of the torus acting on t×X
by

(︂
1
t2
, H t

)︂
. We have to prove that it descends to the action by

(︂
1
t2

AdHt , H t
)︂
. But we

have
AdA(w)(e+ w) = χ(w)

and thus
AdHtA(w)H−t(AdHt(e+ w)) = AdHt(χ(w))

and dividing both sides by t2 gives

AdHtA(w)H−t

(︃
e+ w

t2

)︃
= 1
t2

AdHt(χ(w)).

However,
H tA(w)H−t ∈ U−,

1
t2

AdHt(χ(w)) ∈ S.

The latter follows from 1
t2

AdHt(e) = e and AdHt preserving the centraliser of f , as
AdHt(f) = 1

t2
f . Therefore by uniqueness we have

H tA(w)H−t = A
(︃
w

t2

)︃
,

1
t2

AdHt(χ(w)) = χ
(︃
w

t2

)︃
.

The quotient map ZB → ZG sends (w, x) to (χ(w), A(w)x). And by the above, it sends
t · (w, x) =

(︂
w
t2
, H tx

)︂
to(︃

χ
(︃
w

t2

)︃
, A

(︃
w

t2

)︃
H tx

)︃
=
(︃ 1
t2

AdHt (χ(w)) , H tA(w)H−tH tx
)︃

=
(︃ 1
t2

AdHt (χ(w)) , H tA(w)x
)︃
,

which proves that the action of C× on ZB descends to the action by
(︂

1
t2

AdHt , H t
)︂

on ZG.

The functoriality follows immediately from functoriality for B (cf. Propositions 5.1.18
and 5.1.19).
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Remark 5.2.3. We know Cg(f) ⊂ b− (Section 3.1) and all the weights of the Ht action on
b− are nonpositive (Lemma 3.3.12). Therefore the argument as in Lemma 5.1.10 shows
that ZG lies in S ×Xo. This means that for any computations we have to consider only
an affine part Xo of X.
Remark 5.2.4. In the spirit of Lemma 5.1.11 we can determine in the reductive case
too what functions on ZG the particular Chern classes are mapped to. Assume that
E is a G-linearised vector bundle on X. Let k be a nonnegative integer and consider
cG
k (E) ∈ H∗

G(X) = H∗
T(X)W. If we first consider the map ρ : H∗

T(X) → C[ZB] from
Section 5.1.6, then from Lemma 5.1.11 we know for any (w, x) ∈ ZB that

ρ(cT
k (E))(w, x) = TrΛkEx

(Λk(e+ w)x).

The map ϕ defined as
ϕ(w, x) = (w,A(w)x)

maps ZB isomorphically to Z ′. Then cT
k (E) defines on Z ′ the function ρ(cT

k (E)) ◦ ϕ−1

which satisfies

ρ(cT
k (E)) ◦ ϕ−1(w, y) = ρ(cT

k (E))(w,A(w)−1y) = TrΛkEA(w)−1y
(Λk(e+ w)A(w)−1y).

As E is G-invariant, this is equal to

TrΛkEy
(Λk AdA(w)(e+ w)y) = TrΛkEy

(Λkχ(w)y)

This means that on the quotient ZG the function ρG(cG
k (E)) corresponding to cG

k (E)
satisfies

ρG(cG
k (E))(v, x) = TrΛkEx

(Λkvx).

Let us also note that the G-equivariant Chern classes generate the equivariant cohomology
ring.

Lemma 5.2.5. In the setting above, the G-equivariant cohomology H∗
G(X) is generated

as a C[t]W-algebra by equivariant Chern classes of G-equivariant vector bundles.

Proof. By the Nakayama lemma it is enough to prove (see the proof of Lemma 5.1.14) that
the non-equivariant cohomology H∗(X) is generated by Chern classes of G-equivariant
vector bundles.

We know from the proof of Lemma 5.1.12 that H∗(X) is generated by Chern characters
of T-equivariant coherent sheaves. For any such sheaf F , we can consider the “averaged”
sheaf FW = 1

|W|
⨁︁

η∈W η∗W. As the group G is connected, for any g ∈ G we have
ch(g∗F) = ch(F), hence ch(FW) = ch(F). Therefore H∗(X) is generated by Chern
characters of NG(T)-equivariant coherent sheaves. Then again by [105, Corollary 5.8] it
is generated by Chern characters of NG(T)-equivariant vector bundles. Every NG(T)-
equivariant vector bundle is a W-invariant element of KT(X). However we know by [62,
Corollary 6.7] that KT(X)W = KG(X), hence H∗(X) is generated by Chern classes of
G-equivariant vector bundles.
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Figure 5.4: SpecH∗
SL2(C)(P4) and SpecH∗

SL2(C)(P5).

5.2.4 Examples
We finish this section by providing examples for Theorem 5.2.1. These are extensions of
the examples above for Theorem 5.1.5.
Example 5.2.6. We continue Example 5.1.20. There, we found the C×-equivariant coho-
mology of Pn. Now, using the tools above, we can also find SpecHSL2(C)(Pn). We know
that the map (v, x) ↦→ (v, (I+vf)x) maps the zeros of Ve+vh isomorphically to the zeros of
Ve+v2f . The former form the subscheme cut out by x1(x1 + 2v)(x1 + 4v) . . . (x1 + 2nv) = 0
in the (v, x1)-plane. Note that

f =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 . . . 0
1 · n 0 0 0 . . . 0

0 2 · (n− 1) 0 0 . . . 0
... ... ... ... . . . ...
0 0 (n− 1) · 2 0 . . . 0
0 0 0 n · 1 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

hence the map I + vf acts on the x1 coordinate by adding nv. This means that the zeros
of Ve+v2f are defined by

(x1 − nv)(x1 − (n− 2)v)(x1 − (n− 4)v) . . . (x1 + (n− 2)v)(x1 + nv) = 0.

Bringing the symmetric factors together, we get⎧⎨⎩(x2
1 − n2v2)(x2

1 − (n− 2)2v2) . . . (x2
1 − 4v2)x1 = 0 for n even;

(x2
1 − n2v2)(x2

1 − (n− 2)2v2) . . . (x2
1 − 9v2)(x2

1 − v2) = 0 for n odd.

Therefore

H∗
SL2(C)(Pn) =

⎧⎨⎩C[t, x1]/
(︂
(x2

1 − n2t)(x2
1 − (n− 2)2t) . . . (x2

1 − 4t)x1
)︂

for n even;
C[t, x1]/

(︂
(x2

1 − n2t)(x2
1 − (n− 2)2t) . . . (x2

1 − 9t)(x2
1 − t)

)︂
for n odd.
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5. Zero scheme as the spectrum of equivariant cohomology

The scheme has ⌈n+1
2 ⌉ components, one for each orbit of the action of W = Z/2Z on (Pn)C× .

The parabolas correspond to two-element orbits and the line (for even n) corresponds
to unique fixed point of C× fixed by W. It is equal to [0 : 0 : · · · : 0⏞ ⏟⏟ ⏞

n/2

: 1 : 0 : · · · : 0 : 0⏞ ⏟⏟ ⏞
n/2

].

Examples of the scheme for n = 4 and n = 5 are depicted in Figure 5.4.
Remark 5.2.7. Note that, contrary to Lemma 5.1.27, if the group is not solvable, then
the components of Z will not, in general, project isomorphically to S. In fact, they are
quotients of unions of copies of t by the action of W. The components then correspond
to the orbits of W on XT. A component will project isomorphically to S if and only if
it corresponds to a one-element orbit, i.e. a fixed point of N(T) on X. This is the case
for example for the “middle T-fixed point” in P2n under the SLn action. One then sees a
single line in the left part of Figure 5.4.

Figure 5.5: Two different views of SpecH∗
SL2(C)(Gr(2, 4)).

Example 5.2.8. We continue Example 5.1.23. The principal SL2(C) ⊂ SL4(C) subgroup
acts on Gr(2, 4). One can check that

Vf |x1,y1,x2,y2 = (−3y1, 4, 3x1 − 3y2, 3y1).

Then

Ve+tf |x1,y1,x2,y2 = (x2−x1y1−3ty1,−x1−y2
1 +y2+4t,−x1y2+3tx1−3ty2,−x2−y1y2+3ty1).

As before, from the first two equations of Ve+tf = 0, we can determine x2 and y2, so
SpecH∗

SL2(C)(Gr(2, 4)) can be embedded in C[t, x1, y1]. Its equations are

12t2 + 4tx1 − x2
1 − 3ty2

1 − x1y
2
1 = 0, y1(4t− 2x1 − y2

1) = 0.

By considering two possibilities in the latter, one easily arrives at four possibilities:

(x1 = −2t, y1 = 0), (x1 = 6t, y1 = 0), (x1 = −6t, y2
1 = 16t), (x1 = 0, y2

1 = 4t).

As in the previous example, the components correspond to orbits of W acting on Gr(2, 4)C× .
The former two correspond to one-element orbits, i.e. {span(e2, e3)} and {span(e1, e4)},
and the latter come from two two-element orbits. The scheme embedded in t, x1, y1-space
is presented in Figure 5.5.
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5.2. Reductive and arbitrary principally paired algebraic groups

Example 5.2.9. We consider an example for a group of higher rank, SL3(C), that we
can still draw. Let it act on P2 in the standard way. In Example 5.1.24 we calculated
the equivariant cohomology of P2 with respect to (two-dimensional) torus. Now we will
compute the SL3-equivariant cohomology. The Kostant section is

S =

⎧⎪⎨⎪⎩
⎛⎜⎝ 0 1 0
c2 0 1
c3 c2 0

⎞⎟⎠ : c2, c3 ∈ C.

⎫⎪⎬⎪⎭
The coordinates c2, c3 ∈ C[S] ∼= H∗(B SL3(C)) are (up to scalar multiples) the universal
Chern classes of principal SL3(C)-bundles, or equivalently, of rank 3 vector bundles with
trivial determinant. We have already computed that Ve|x1,x2 = (x2 − x2

1,−x1x2). Then it
is easy to see that for

M =

⎛⎜⎝ 0 1 0
c2 0 1
c3 c2 0

⎞⎟⎠
we have VM |x1,x2 = (x2 − x2

1 + c2,−x1x2 + c2x1 + c3). As before, we can eliminate x2 by
substituting from the first equation and we get the equation x3

1 − 2c2x1 − c3 = 0. The
corresponding scheme SpecH∗

SL3(C)(P2) in coordinates c2, c3, x1 is illustrated in Figure
5.6. It is irreducible, as all three torus-fixed points lie in one orbit of the Weyl group.
The projection to the (c2, c3)-plane is generically a 3 − 1 map.

On the right hand side of Figure 5.6 the slice c3 = 0 is marked in red. The elements of S
that satisfy c3 = 0 form the Kostant section of the principal SL2 subgroup – which acts as
in Example 5.2.6. Therefore the red scheme is equal to SpecH∗

SL2(P2). Additionally, the
functoriality of Theorem 5.2.1 implies that restriction to c3 = 0 yields the base restriction
map

H∗
SL3(P2) → H∗

SL2(P2).

Figure 5.6: SpecH∗
SL3(C)(P2). On the right the subscheme SpecH∗

SL2(C)(P2) is marked.
Compare with Figure 5.4.
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5. Zero scheme as the spectrum of equivariant cohomology

Example 5.2.10. As in Example 5.1.25, we now consider the action of SL3(C) on the
variety F3 of full flags in C3. We determined Ve in Example 5.1.25. We can analogously
determine the vector fields corresponding to lower triangular matrices. Then for

M =

⎛⎜⎝ 0 1 0
c2 0 1
c3 c2 0

⎞⎟⎠
we easily get

VM |a,b,c = (−a2 + b+ c2,−ab+ ac2 + c3,−b+ ac− c2 + c2).

Plugging in b from the first equation, we obtain

a3 − 2c2a+ c3 = 0, a2 − ac+ c2 = 2c2.

The first equation for a clearly coincides with the equation for x1 from the previous
example. One can easily see that the equations mean that a and −c are two of the three
roots of the polynomial x3 − 2c2x+ c3 = 0. The map to the (c2, c3)-plane is generically
6 − 1. As all the torus-fixed points, i.e. coordinate flags, lie in one orbit of the Weyl
group, in the GIT quotient of Spec(H∗

T(F3)) they are joined together and the scheme is
irreducible.

5.2.5 Principally paired algebraic groups
In fact, we can prove the equivalent of Theorem 5.2.1 for a principally paired, but not
necessarily reductive algebraic group. This version will yield a common generalisation to
Theorem 5.2.1 and Theorem 5.1.5. Note that for any principally paired group H with
maximal torus T and Weyl group W we have H∗

H = C[t]W = C[S] – see the comment
above Theorem 3.3.17. We will prove the following.

Theorem 5.2.11. Assume that H is a principally paired algebraic group which acts on a
smooth projective variety X regularly. Let ZH be the closed subscheme of S ×X, defined
as the zero set of the total vector field (Definition 2.5.1) restricted to S ×X.

Then ZH is an affine reduced scheme and H∗
H(X) ∼= C[ZH] as graded C[S]-algebras, where

the grading on the right-hand side is defined on S via 1
t2

AdHt and on X by the action of
C× via H t. In other words, ZH = SpecH∗

H(X), S = SpecH∗
H and the projection ZH → S

yields the structure map H∗
H → H∗

H(X). This isomorphism is functorial as in Theorem
5.2.1.

ZH SpecH∗
H(X;C)

S SpecH∗
H.

π

∼=

∼=

Remark 5.2.12. As N is contractible, the Levi subgroup L ⊂ H is a homotopy retract of H,
and for any H-space X we have H∗

H(X) = H∗
L(X). In particular, if H is solvable, we have

H∗
H(X) = H∗

T(X), where T is a maximal torus within H. This explains how the theorem
above generalises Theorem 5.1.5.

Proof of Theorem 5.2.11. We will proceed analogously to the proof in Section 5.2.3. We
follow the notation from Section 3.3.3. In particular, B is the Borel subgroup of H such
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5.2. Reductive and arbitrary principally paired algebraic groups

that its Lie algebra b contains e. We first consider the scheme ZB ⊂ t ×X, defined as in
Section 5.1, i.e. the zero scheme of the total vector field on g×X, restricted to (t+e)×X.
Then from Lemma 3.3.13 we get morphisms A : t → U−, χ : t → S such that

AdA(w)(e+ w) = χ(w),

so that (id, A(w)) maps ZB to Z ′, where

Z ′ = {(w, x) ∈ t ×X : Vχ(w)|x = 0}.

In fact, A and χ are exactly the same as in Section 5.2.3 (see the proof of Lemma 3.3.13).
In particular, χ induces the isomorphism t//W → S. For any regular w ∈ t we have the
element Mw ∈ B such that AdMw(w) = e+ w. Just like in Lemma 5.2.2, for any η ∈ W
we get that for any regular w the element Cη,w = M−1

η(w)A(ηw)−1A(w)Mw is in the class
of η in NL(T)/T. Note that here Mη(w) ∈ Bl.
This then proves, similarly as in Section 5.2.3, that the Weyl group action on ZB, when
transported to Z ′, is defined by η ↦→ (η, id). And then as χ : t//W → S is an isomorphism,
we get that

ZH ∼= ZB//W = SpecH∗
T(X)//W = SpecH∗

H(X).

We have to prove that the grading on C[ZH] defined by the grading on H∗
H(X) agrees

with the one described in the theorem. We know that in the solvable case the grading
is defined by the action of C× on ZB via

(︂
1
t2
, H t

)︂
(Definition 5.1.4). Just like in the

reductive case, we need to prove that under quotient by W it descends to the action by(︂
1
t2

AdHt , H t
)︂
. The argument for reductive groups does not translate exactly, as a priori

we do not know whether H t preserves the centraliser of f . However we know that H t
l , the

one-parameter subgroup generated by hl, does.
On the other hand, as [h, e] = [hl, e] = 2e, from Lemma 3.3.14 we infer h− hl ∈ Z(l). As
in the proof of Theorem 5.2.1, we have

AdHtA(w)H−t

(︃
e+ w

t2

)︃
= 1
t2

AdHt(χ(w))

and
H tA(w)H−t ∈ U−,

1
t2

AdHt(χ(w)) ∈ S,

where now the latter follows from 1
t2

AdHt(e) = e and AdHt = AdHt
l

preserving the
centraliser of f , as AdHt

l
(f) = 1

t2
f . Therefore we have

H tA(w)H−t = A
(︃
w

t2

)︃
,

1
t2

AdHt(χ(w)) = χ
(︃
w

t2

)︃
.

and the same reasoning follows. This proves Theorem 5.2.11.

Example 5.2.13. Basic examples of non-reductive, non-solvable linear groups are parabolic
subgroups of reductive groups. Let us consider such a group P ⊂ G, where G is reductive
and assume that B ⊂ P is a Borel subgroup of G contained in P. Then we can consider
a principal b(sl2)-triple (e, f, h) in g such that e, h ∈ b. This makes P into a principally
paired group and we can make use of Theorem 5.2.11.
Suppose that X is a Schubert variety in some partial flag variety G/Q. Its stabiliser P in
G contains B, hence it is a parabolic subgroup. In general it is larger than B (see more in
[100, Section 2]). Remember that B acts on G/Q regularly (Example 3.4.3). Therefore if
X is smooth, Theorem 5.2.11 gives the P-equivariant cohomology of X.
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5. Zero scheme as the spectrum of equivariant cohomology

Example 5.2.14. As in the previous example, assume that X is a Schubert variety –
possibly non-smooth – in G/Q fixed by P. One can then construct a Bott–Samelson
resolution of X [100, Section 2, p. 446] which is P-equivariant. As in Lemma 5.1.29, such
a resolution will be a smooth regular P-variety. Hence we can use Theorem 5.2.11 to
compute its P-equivariant cohomology.

We also extend Lemma 5.2.5 to principally paired groups.

Lemma 5.2.15. Assume that a principally paired group H acts regularly on a smooth
projective variety X. Then the H-equivariant cohomology H∗

H(X) is generated as a
C[t]W-algebra by equivariant Chern classes of H-equivariant vector bundles.

Proof. As the Levi subgroup is a deformation retract of H, the restriction H∗
H(X) → H∗

L(X)
is an isomorphism. From Lemma 5.1.12, H∗(X) is generated by the Chern characters
of vector bundles equivariant with respect to the Borel subgroup of L. Then the proof
analogous to Lemma 5.2.5 shows that H∗(X) is generated by the Chern characters of
L-equivariant vector bundles. Then by Theorem 2.7.9 it is generated by the Chern
characters of H-equivariant vector bundles. Then by graded Nakayama lemma the same
is true for H∗

H(X).

5.3 Extensions: singular varieties and total zero
schemes

In this section we discuss two directions to extend our results. First we discuss generalisa-
tions to singular varieties.

5.3.1 Singular varieties
Our main Theorem 5.2.11 may be generalised to singular varieties, in the spirit of [28,
Section 7]. There the singular case is considered for B2-equivariant cohomology, extending
Theorem 4.3.3. A sufficient condition will be an embedding in a smooth regular variety
such that the corresponding map on ordinary cohomology is surjective. Compare this
with Corollary 5.1.22.

Proposition 5.3.1. Assume that H is a principally paired algebraic group and let S be
the Kostant section within H, as defined in Section 5.2.5. Let B be a Borel subgroup of H.
Assume that H acts regularly on a smooth projective variety X and let ZX

H be the zero
scheme defined in Theorem 5.2.11 for the H-action on X.

Assume Y is a closed H-invariant subvariety whose cohomology is generated by Chern
classes of B-linearised vector bundles. Then analogously to Section 5.2.5 we can define
an isomorphism of graded C[S]-algebras H∗

H(Y ) → C[ZY
H ], where ZY

H is the reduced
intersection ZY

H = ZX
H ∩ (S × Y ). The isomorphism makes the diagram

H∗
H(X) H∗

H(Y )

C[ZX
H ] C[ZY

H ]

(5.14)
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commutative. The assumption on the cohomology of Y holds in particular if the inclusion
Y → X induces a surjective map H∗(X) → H∗(Y ) on ordinary cohomology.

Proof. The proof is essentially the same as in [28, Section 7]. We only sketch it here.
Assume first that H is solvable. Every point of the variety ZY

H is of the form (w,Mwζ),
where Mw ∈ H depends on w and ζ is a T-fixed point contained in Y . Therefore, for
any c ∈ H∗

T(Y ), we can define ρY (c) (we only localise to points in Y ). The condition
on cohomology of Y allows us to use Lemma 5.1.11 to show that ρY actually maps
H∗

T(Y ) to C[ZY
H ]. The injectivity of ρY follows again from injectivity of localisation on

equivariantly formal spaces ([54, Theorem 1.2.2]). The diagram is obviously commutative
and surjectivity of ρY follows then from the surjectivity of restriction C[ZX

H ] → C[ZY
H ] to

closed subvariety.

Now assume that H is arbitrary principally paired group. Let B be its Borel subgroup and
by ZY

B denote the appropriate zero scheme defined for B acting on Y . As Y is H-invariant,
the arguments from the proof of Theorem 5.2.11 show that C[ZY

H ] = C[ZY
B ]W and the

conclusion follows. The last line of the proposition is implied by Lemma 5.1.14.

Example 5.3.2. Let H = B, the Borel subgroup of a reductive group G. Natural examples
of singular regular B-varieties are Schubert varieties in flag variety G/B or any other
subvarieties that are unions of Bruhat cells, see [6, Theorem 5 with remarks]. In general,
Schubert varieties are stabilised by parabolic subgroups (see in [100, Section 2]). Those
are therefore singular P-regular varieties for parabolic groups P.
Example 5.3.3. Assume that X = G/B is the flag variety of type A, i.e. G = SLm(C).
Then if Y is any Springer fiber within X, the restriction on cohomology H∗(X) → H∗(Y )
is surjective [84], hence Proposition 5.3.1 also holds in that case.

However, there exist G-invariant subvarieties for which the restriction map on cohomology
is not surjective.
Remark 5.3.4. The assumption on surjectivity on cohomology of Y is necessary in the
proposition above. Consider the following. Let SL2 act on P3 as in Example 5.2.6. It
comes from a representation Sym3 V , where V is the fundamental representation of SL2.
It has two extreme (highest and lowest) weights and two “middle” weights. The point o
of P3 which represents the highest weight space is fixed by the Borel subgroup of upper
triangular matrices and hence one sees that its orbit is isomorphic to the full flag variety
SL2 /B2 ∼= P1. However, if we consider a point p ∈ P3 representing a non-highest weight
space, its stabiliser is a torus, i.e. StabSL2(p) ∼= T. Hence its SL2-orbit is not closed. We
denote its closure by Y := SL2 ·p. We claim that Y is not smooth. We can see this directly,
by noticing that it is the projectivised variety of polynomials a0x

3 + a1x
2y + a2xy

2 + y3

with at least two roots (vanishing lines) equal, and writing down the discriminant equation.
We can also see this using our results. If Y were smooth, by Corollary 5.1.22, the map
H∗(P3) → H∗(Y ) would be surjective, but both varieties admit an action of T, with
the same set of fixed points, therefore the map would have to be an isomorphism. It is
impossible for dimensional reasons (H6(Y ) = 0).

Moreover, not only is Y singular, but in any case the map H∗(P3) → H∗(Y ) cannot be
surjective. Otherwise, this would mean that Proposition 5.3.1 applies. However, as all
the T-fixed points are already in Y , one sees immediately that Z is already in Y . Then
again, we would have H∗(Y ) = H∗(P3), which is impossible for the same reason as above.
Thus H∗(P3) → H∗(Y ) is not surjective, and moreover H∗(P3) is not generated by Chern
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5. Zero scheme as the spectrum of equivariant cohomology

classes of B2-equivariant bundles. This shows that the assumption is necessary in the
proposition.
Remark 5.3.5. Assume we are given an H-invariant subvariety Y of a regular smooth
H-variety X. By Proposition 5.3.1 and Corollary 5.1.22 the surjectivity of the restriction
H∗(X) → H∗(Y ) is necessary and sufficient for the existence of an isomorphism H∗

H(Y ) →
C[ZY

H ] which makes (5.14) commutative. Carrell and Kaveh prove in [33, Theorem 2], for
the case of H = B2, that it is equivalent to H∗

T(Y ) being generated by Chern classes of
B2-equivariant bundles.

5.3.2 Total zero scheme
Assume that G is a principally paired algebraic group, e.g. G reductive. We showed in
Theorem 5.2.11 how to see geometrically the spectrum of G-equivariant cohomology of X
for G acting regularly on a projective variety X. However, this needed a choice – of a
concrete b(sl2)-pair (e, h) and the associated Kostant section. A natural challenge would
be to try to find equivariant cohomology as global functions on a scheme that does not
depend on choices.

Definition 5.3.6. Let an algebraic group G act on a smooth projective variety X.
Consider the total vector field on g×X (Definition 2.5.1). We call its reduced zero scheme

Ztot ⊂ g ×X

the total zero scheme.

Now we are ready to show the following.

Theorem 5.3.7. Assume that G is principally paired. Let it act on a smooth projective
variety regularly. Consider the action of C× on the total zero scheme Ztot by t · (v, x) =(︂

1
t2
v, x

)︂
and the action of G by g · (v, x) = (Adg(v), g · x). Then the ring C[Ztot]G of

G-invariant functions on Ztot is a graded algebra over C[g]G ∼= H∗
G(pt) isomorphic to

H∗
G(X), where the grading comes from the weights of the C×-action on C[Ztot]G:

C[Zg]G H∗
G(X;C)

C[g]G H∗
G.

∼=

∼=

Following the notation from Theorem 5.2.11, we show that the restriction C[Ztot]G →
C[ZG] is an isomorphism, so that we get the following diagram

C[Ztot]G C[ZG] H∗
G(X,C)

C[g]G C[t]W H∗
G(pt,C)

with all horizontal arrows being isomorphisms. The statement for the bottom line
follows from Lemma 3.3.16. First we prove that the restriction C[Ztot]G → C[ZG] is an
epimorphism.
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Lemma 5.3.8. Under the assumptions of Theorem 5.3.7, the restriction C[Ztot]G → C[ZG]
is surjective.

Proof. By Lemma 5.2.15 we know that C[ZG] is generated over C[t]W ∼= C[g]G by functions
ρG(cG

k (E)) for positive integers k and G-equivariant vector bundles E . Those functions
are defined by

ρG(cG
k (E))(v, x) = TrΛkEx

(Λkvx),
see Remark 5.2.4. For each such function, we can consider the regular function fk,E defined
on Ztot by its values:

fk,E(v, x) = TrΛkEx
(Λkvx).

It is clearly G-invariant and restricts to ρG(cG
k (E)) on ZG. As C[ZG] is generated by such

functions, the conclusion follows.

For the injectivity, let us start with an easy intermediate step. Let Zreg be the open
subscheme of Ztot consisting of the part over greg ⊂ g (hence a closed subscheme of
greg ×X). Then we have

Lemma 5.3.9. Let G be a principally paired algebraic group. Assume it acts on a connected
smooth projective variety, not necessarily regularly. The restriction C[Zreg]G → C[ZG] is
injective, where Zreg and ZG are defined as above, as zero schemes over greg and S.

Proof. As Zreg is reduced, a function is determined by its values on closed points. By
Lemma 3.3.15 every G-orbit in greg intersects S, thus the G-orbit of any closed point in
Zreg intersects ZG. It is therefore enough to specify a G-invariant function on Zreg on
closed points of ZG. The result follows.

To finish the proof, we are only left with the proof of injectivity of the restriction
C[Ztot]G → C[Zreg]G. We will utilise the following Lemma to prove that the restriction
C[Ztot] → C[Zreg] is injective.

Lemma 5.3.10. Let Y be a reduced scheme over a field k. Assume Z is a closed subvariety
and every closed point p ∈ Y is contained in a projective closed subvariety that intersects
Z. Then the restriction map on regular functions k[Y ] → k[Z] is injective.

Proof. Let us assume that f ∈ k[Y ] vanishes on Z. Consider any closed point p ∈ Y .
Let Ap be a projective closed subvariety that contains p and intersects Z in a closed
point q. Then f |Ap is a regular function on a projective variety over k, hence it is has
constant value on all closed points of Ap. As f(q) = 0, this means that it takes the value
0. Therefore f(p) = 0. Hence f vanishes on every closed point.

As Y is reduced and of finite type over a field, we know that regular functions are uniquely
determined by their values on closed points. Therefore f = 0.

To arrive at the lemma’s assumptions, we first prove slightly stronger versions of Lemmas
2.3.4 and 2.5.3, under the condition that the action of the Lie algebra is integrable.

Lemma 5.3.11. Assume that a solvable algebraic group H acts on a smooth complex
variety X. Let P ⊂ X be a projective irreducible component of the reduced zero scheme of
a linear subspace V ⊂ h. Then P contains a simultaneous zero of Nh(V).
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Proof. By [19, Lemma 7.4] we have Nh(V) = Lie(NH(V)). Let NH(V)o be the connected
component of the identity within NH(V). We know from Lemma 2.5.2 thatNH(V) preserves
the zero set of V. Thus NH(V)o preserves its irreducible components, in particular P .
By the Borel fixed point theorem [90, Corollary 17.3], NH(V)o it must have a fixed point
p ∈ P . Then its Lie algebra Lie(NH(V)o) = Lie(NH(V)) = Nh(V) vanishes on p.

Lemma 5.3.12. Assume that an algebraic group H acts on a smooth variety X. Let
d, n ∈ h commute and assume that the Lie subalgebra generated by [h, h] and n is nilpotent.
Let P be a projective irreducible component of the reduced zero scheme of j = d+n. Then
P contains a simultaneous zero of Ch(d), in particular, a zero of any abelian subalgebra
of h containing d.

Proof. By restricting to the connected component of the identity, we can assume that H
is connected. As [h, h] is nilpotent, h must be solvable, hence H is solvable too.

Let k be the Lie subalgebra generated by [h, h] and n. By Lemma 5.3.11 we get that inside
P there is a zero p of Nh(C · j), which in particular contains d and n. As P is irreducible,
any irreducible component of the simultaneous zero set of d and n which contains p is
completely contained in P . Let P1 ⊂ P be one such irreducible component. As it is closed
inside P , it also has a structure of a projective scheme.

We will first show that P1 contains a simultaneous zero of C ′(d) = Ch(d) ∩ k. As k
is nilpotent, C ′(d) is as well. By Lemma 5.3.11, P1 contains a simultaneous zero of
Nh(spanC(d, n)), hence in particular of NC′(d)(C ·n). Note that by definition everything in
C ′(d) centralises d. As P1 consists of zeros of d, it will contain an irreducible component
P2 of the common zero locus of d and NC′(d)(C · n). As a closed subscheme of P1, P2 is
also projective. By the same argument, P2 contains an projective irreducible component
P3 of the common zero locus of d and N2

C′(d)(C · n). As in the proof of Lemma 2.5.3,
there exists a positive integer k such that Nk

C′(d)(C · n) = C ′(d), hence we get a projective
irreducible component Pk+1 of the common zero locus of d and C ′(d). But again as in
Lemma 2.5.3, C ′(d), as well as d, is normalised by Ch(d). Hence inside Pk+1 there is a
zero of Ch(d).

Lemma 5.3.13. Let G be a principally paired algebraic group. Assume that it acts
on a connected smooth projective variety X, not necessarily regularly. The restriction
C[Ztot]G → C[ZG] is injective, where Ztot and ZG are defined as before, as the zero
schemes over g and S.

Proof. We have the sequence of restrictions C[Ztot]G → C[Zreg]G → C[ZG]. By Lemma
5.3.9 we only need to prove that the first map is injective. Obviously the restriction
C[Zreg] → C[Zreg] is injective, where we take the closure of Zreg in Ztot. We will prove
that C[Ztot] → C[Zreg] is injective and this will prove the theorem.

We employ Lemma 5.3.10 for that. We have to prove that every point of Ztot is contained
in a projective subvariety which intersects Zreg. Let (v, p) ∈ Ztot ⊂ g × X. Then p is
contained in the zero scheme of the vector field Vv, hence in some irreducible component P
thereof. It is a closed subscheme of X, hence it is projective. Then we have {v}×P ⊂ Ztot
as a projective closed subvariety. Let v = d + n be the Jordan decomposition of v, as
in Theorem 2.4.5. As d and n commute, they are contained in a Lie algebra b of some
Borel subgroup B ⊂ G. Let T be a maximal torus within B such that d ∈ t = Lie(T).
Then from Lemma 5.3.12, for H = B, we get that P contains a simultaneous zero x of

94



5.3. Extensions: singular varieties and total zero schemes

t. It is also a zero of v, hence we have (t + C · v) × {x} ⊂ Ztot. Note that t contains a
regular element, and as the regular elements within g form an open subset, the regular
elements of t + C · v form an open nonempty subset, hence they are dense. This means
that (t+C ·v) ×{x} ⊂ Zreg, hence in particular (v, x) ∈ Zreg, and (v, x) ∈ {v}×P , where
{v} × P is a projective subvariety of Ztot, therefore we are done.

Proof of Theorem 5.3.7. The isomorphism follows from Lemmas 5.3.8 and 5.3.13.

For the grading, we just have to show that the defined action of C× descends under
the restriction C[Ztot]G → C[ZG] to the action defined in Theorem 5.2.11. Let f be a
G-invariant function on Ztot. Then for any t ∈ C× the pullback t∗f of f by t is defined by

t∗f(v, x) = f
(︃ 1
t2
v, x

)︃
.

As f is G-invariant, this means

t∗f(v, x) = f
(︃ 1
t2

AdHt v,Htx
)︃
.

When we restrict to ZG, the group C× acts precisely by
(︂

1
t2

AdHt , H t
)︂
, by Theorem 5.2.11.

Therefore the actions agree.

Example 5.3.14. Assume that G is a reductive group acting on a partial flag variety
X = G/P. Then the zero scheme is

g̃P := {(x, p′) ∈ g × G/P|x ∈ p′},

which agrees with the partial Grothendieck–Springer resolution. Thus we get that as a
C[g]G ∼= H∗

G-module, the ring of invariant functions C[g̃P]G is equal to H∗
G(G/P) = H∗

P =
C[t]WP .

Figure 5.7: Affine parts of the total zero scheme for the action of B2 on P1. The left part
misses a line (over b = 0), the right part misses the blue component.
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Example 5.3.15. There is one example that we are able to draw. It is the action of B2 on
P1 (see Example 5.1.20). The total zero scheme is not affine, but we can cover it with
two affine pieces, coming from affine cover of P1. The first one will be the part contained
in b2 × {[1 : x]|x ∈ C} and the other will be the part contained in b2 × {[y : 1]|y ∈ C}. If
we consider coordinates (a, b) on b2 that correspond to matrices(︄

a b
0 −a

)︄
∈ b2,

then the surface has the equations 2ax + bx2 = 0 in (a, b, x)-plane (the first piece)
and 2ay + b = 0 in (a, b, y)-plane (the second piece). The scheme has two irreducible
components and the pieces are drawn in Figure 5.7.

One sees that the B2-invariant functions on the blue part depend only on a, hence they
form C[a]. Analogously on the orange part the B2-invariant functions only depend on
a = − bx

2 , as for a ̸= 0 any two points with the same a are conjugate, and for a = 0 we
get b = 0 or x = 0. The former line is a projective line on which an invariant function
must attain the same value, and the latter lies in the blue part. This leaves us with
two functions from C[a] with the same constant term. One easily sees that this ring is
isomorphic to e.g. C[a, x]/x(x+ 2a).

5.3.3 Equivariant cohomology of GKM spaces via total zero
scheme

We suspect that the description of equivariant cohomology as the ring of regular functions
on the total zero scheme might still hold in a larger generality. For example, one could
presume that a sufficiently regular torus action might lead to such a description, even
without embedding torus in a larger solvable group (as in Section 5.1). Here we prove
this equality for GKM spaces, whose equivariant cohomology we know.

Theorem 5.3.16. Let a torus T ∼= (C×)r act on a smooth projective complex variety X
with finitely many zero and one-dimensional orbits. In other words, the T-action makes
X a GKM space. Let Z = Ztot ⊂ t ×X be the reduced total zero scheme of this action
(Definition 5.3.6). Then C[Z] ∼= H∗

T(X) as graded algebras over C[t] ≃ H∗
T:

C[Z] H∗
T(X;C)

C[t] H∗
T.

∼=

∼=

Let us denote the T-fixed points by ζ1, ζ2, . . . , ζs and the one-dimensional orbits by E1,
E2, . . . , Eℓ. Recall that the closure of any Ei is an embedding of P1 and contains two fixed
points ζi0 and ζi∞ , which for any x ∈ Ei are equal to the limits limt→0 tx and limt→∞ tx.
The action of T on Ei has a kernel of codimension 1, which is uniquely determined by its Lie
algebra ki. Then Theorem 2.6.7 says that the restriction H∗

T(X,C) → H∗
T(XT ,C) ∼= C[t]s

is injective and its image is

H =
{︄

(f1, f2, . . . , fs) ∈ C[t]s
⃓⃓⃓⃓
⃓ fi0|ki

= fi∞ |ki
for j = 1, 2, . . . , ℓ

}︄
.
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Using this description, we will proceed by finding an injective map ρ : H∗
T(X) → C[Z]

and an injective left inverse r : C[Z] → H ∼= H∗
T(X). We will use Lemma 5.3.10 with

Y = Z as defined above and Z = t × XT. Take any (v, p) ∈ Z. The point p lies in
the zero scheme Zv of the vector field on X corresponding to v. As T is a commutative
group, and hence acts trivially on its Lie algebra, it preserves zeros of v ∈ t. Therefore
{v} × T · p ⊂ Z and {v} × T · p is a closed projective subvariety of Z. As T acts on
it, by the Borel fixed point theorem it contains a fixed point of T, hence intersects Z
nontrivially. Therefore this choice of Y and Z satisfies the conditions of the Lemma.

We know that there are finitely many distinct types of orbits of the T-action on X. This
can be seen by embedding X equivariantly in a projective space with a linear action of T,
see [45, Theorem 7.3]. Therefore there exists a one-parameter subgroup {H t}t∈C× ⊂ T that
is not contained in any proper centraliser. Then the fixed points of H t are automatically
the fixed points of T. Consider the Białynicki-Birula minus–decomposition, consisting of
the cells

W−
i = {x ∈ X : lim

t→∞
H t · x = ζi}

for ζ1, ζ2, . . . , ζs being the fixed points of T.

We first define the map ρ : H∗
T(X) → C[Z]. We will define it on closed points, using

reducedness of Z. Let c ∈ H∗
T(X). Assume that (v, x) ∈ Z, i.e. the vector field v is zero

at x. We know that x ∈ W−
i for some i ∈ {1, 2, . . . , s}. The restriction c|ζi

is an element
of H∗

T(pt) ∼= C[t]. Define then
ρ(c)(v, x) = c|ζi

(v).
We first have to prove that this defines a regular function for each c.

Lemma 5.3.17. Let E be a T-equivariant bundle on X. Then

ρ(ck(E))(v, x) = TrΛk(Ex)(Λk(v)).

In particular, ρ(ck(E)) is a regular function on Z.

Proof. Let c = ck(E). Consider the curve C = H t · x. In particular let ζi = limt→∞ H t ·x ∈
C. We then defined ρ(c)(v, x) = c|ζi

(v). But we know that this is equal to

ck(E)|ζi
(v) = TrΛk(Eζi

)(Λkv).

However, as T is commutative, the action of any of its elements, in particular of H t, on
X is T-equivariant, therefore

TrΛk(Ex)(Λkv) = TrΛk(EHt·x)(Λkv)

for any t ∈ C×. Therefore the equality stays true also in the limit, hence

TrΛk(Ex)(Λkv) = TrΛk(Eζi
)(Λkv) = ρ(c)(v, x).

Proof of Theorem 5.3.16. We have defined the map ρ, we just have to prove that it is an
isomorphism. For injectivity, note that t ×XT is contained in Z. By definition, if ρ(c)
is zero on this subspace, then all localisations to T-fixed points vanish. But by theorem
2.6.7 the localisation is injective, hence c = 0.
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The set t×XT ⊂ Z is closed and considering it as a reduced subvariety, by Lemma 5.3.10
we get that the restriction map

r : C[Z] → C[t ×XT] ∼= C[t]s

is injective. We need to prove that the image lies in H and that r ◦ ρ is the localisation
map H∗

T(X) → H. The latter comes directly from the definition, as ρ(c)(v, ζi) = c|ζi
(v).

Now we need to prove that for any Ei and v ∈ ki and f ∈ C[Z] we have f(v, ζi0) = f(v, ζi∞).
Note that as the infinitesimal action of ki is trivial on Ei, we have ki × Ei ⊂ Z. This
means that over each v ∈ ki there is a closed subset {v} × Ei ⊂ Z. As the reduced
subscheme structure makes this a projective variety (P1, precisely), every global function
on Z needs to be constant along this subvariety. As it contains (v, ζi0) and (v, ζi∞), we
get f(v, ζi0) = f(v, ζi∞).

Remark 5.3.18. Thus the ring of regular functions on the total scheme is isomorphic to
the equivariant cohomology for regular actions of principally paired group on smooth
projective varieties, by Theorem 5.3.7, as well as for GKM spaces by Theorem 5.3.16. A
similar result can be also proved e.g. for spherical varieties, see Theorem 6.2.1.

In the above, we used the fact that the torus-fixed points are isolated, but we also needed
the GKM cohomology result, i.e. Theorem 2.6.7. This way we know that any function on
the zero scheme will be a cohomology class, as it will determine an element that already
lies in H. Note that for arbitrary torus actions, every 1-orbit defines a similar condition
on the image of localisation, but the image of localisation will be in general strictly smaller
than similarly defined H.

We can see that it is not enough to assume for the torus to act with isolated fixed points.
Indeed, let us consider X = P2, but we restrict the standard action of the two-dimensional
torus to one-dimensional C×. Take e.g. the action t · [x : y : z] = [x : t2y : t4z]. The only
fixed points are [1 : 0 : 0] and [0 : 1 : 0] and [0 : 0 : 1] and hence if we consider any nonzero
v ∈ C ∼= Lie(C×), the associated vector field only has those three zeros. On the other
hand, for v = 0 the zero scheme is the whole P2. Therefore Ztot ⊂ C ×X will consist of a
vertical P2 and three horizontal lines. The action of t ∈ C× multiplies by t−2 on each of
those lines.

Any global function on Ztot determines polynomials f1, f2, f3 on those lines. Then
C[Ztot] = {(f1, f2, f3) ∈ C[x]3|f1(0) = f2(0) = f3(0)}. There is an injective map
H∗

C×(P2) → C[Ztot], but it is not surjective. From Example 5.1.20 we have H∗
C×(P2) =

C[x, v]/
(︂
x(x+2v)(x+4v)). Geometrically, we see the map Ztot → SpecH∗

C×(P2) which con-
tracts P2 to the point. We see that h2

C×(P2) = 2, but C[Ztot]2 = {(ax, bx, cx)|a, b, c ∈ C}
is three-dimensional.
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CHAPTER 6
Further directions and open problems

The previous chapter presented the results of [66]. The article opens a lot of interesting
possibilities and motivates many questions, extending the original results. We discuss
here the newer developments by the author, and sketch potential new directions and
conjectures.

6.1 General singularities
In Proposition 5.3.1 we prove how to recover the spectrum of equivariant cohomology
of possibly singular projective variety in a specific case. Namely, we require it to be
embedded in a smooth variety with a regular action such that the restriction map on
cohomology is surjective. For a completely general singular variety with a regular action,
the situation might be much harder. There is in general no reason to expect that the
variety will even only have even cohomology. However, even without the assumption on
cohomology, we can still infer something about a subring of the equivariant cohomology
ring. Namely, we need to restrict our attention to the subring generated by the equivariant
Chern classes of equivariant vector bundles. This is in some sense the subring of those
elements that come from equivariant geometry. In the last 30 years, similar subrings have
been considered for moduli spaces, and are know as tautological rings. They have been
introduced by Mumford in [94] and it rose to importance with Kontsevich’s work [81].
See also the expository article by Ravi Vakil [109].

Let H be an algebraic group. For any H-variety X, we define ˜︂H∗
H(X) as the subring of

H∗
H(X) generated by the equivariant Chern classes of H-linearised vector bundles. Notice

that if X is a smooth variety with regular H-action, then by Lemma 5.2.15 we have˜︃H∗H(X) = H∗
H(X).

Theorem 6.1.1. Assume that X is a smooth projective variety with a regular action of
a principally paired group H. Let Y ⊂ X be a closed H-invariant subvariety, possibly
singular. Let S be a Kostant section of H. Consider the zero scheme ZX ⊂ S × X of
the total vector field restricted to S ×X, as in Theorem 5.2.11. Let ZY = ZX ∩ (S × Y )
be the reduced intersection. Then the isomorphism ρ : H∗

H(X) → C[ZX ] descends to an
isomorphism ˜︁ρ : ˜︂H∗

H(Y ) → C[ZY ], so that ZY ≃ Spec ˜︂H∗
H(Y ). This makes the following
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diagram commutative.
H∗

H(X) ˜︂H∗
H(Y )

C[ZX ] C[ZY ]

ι∗

ρ ˜︁ρ (6.1)

Proof. As in the proof of Theorem 5.2.1, the scheme ZY for a reductive or general
principally paired group is the quotient of the scheme for its Borel by the Weyl group
action. Similarly, if T is the maximal torus of H, ˜︂H∗

H(X) is the Weyl-invariant part of˜︂H∗
T(X), as in Lemma 5.2.5. Hence we can assume that H is solvable. Then we actually

have H∗
H(Y ) = H∗

T(Y ) and ˜︂H∗
H(Y ) = ˜︂H∗

T(Y ). Therefore we can in fact view ˜︂H∗
H(Y ) as

generated by T-equivariant Chern classes in H∗
T(Y ) of H-equivariant vector bundles.

As X is smooth, from Lemma 5.2.15 we have that H∗
H(X) is already generated by the

Chern classes of H-equivariant vector bundles. Therefore the restriction H∗
H(X) → ˜︂H∗

H(Y )
is well defined. For any c ∈ H∗

H(X) the function ρ(cT
k (E)) is defined on (v, p) by localisation

to a torus-fixed point in the same H-orbit as p. Hence the values of ι∗(c) on the points of
ZY are defined by localisation only to torus-fixed points in Y . Hence also ˜︁ρ is well-defined.
The diagram is then obviously commutative. We need to prove that ˜︁ρ is an isomorphism.
Surjectivity follows from surjectivity of the restriction C[ZX ] → C[ZY ], as ZY is a closed
subscheme of an affine scheme ZX .

We now only need to prove injectivity of ˜︁ρ. Note that we can push forward any H-linearised
vector bundle E on Y to a coherent sheaf ι∗E on X. Then for any k, the Chern class
cT
i (ι∗E) ∈ H∗

T(X) is well-defined, as X is smooth. Its pullback to H∗
H(X) is cT

i (E), as
ι∗ι∗ = id for ι being a closed embedding. As ι∗E is trivial outside of Y , it localises trivially
to any torus-fixed point not in Y . Hence we have shown that any element c ∈ ˜︂H∗

G(Y ) has
a lift to ĉ ∈ H∗

H(X) which localises trivially to torus-fixed points outside of Y . Assume
then that ˜︁ρ(c) = 0. This means that ĉ also localises trivially to all torus-fixed points in Y ,
as ˜︁ρ(c) is computed by localisation to those points and we can recover them from ˜︁ρ(c)
on the regular semisimple locus. Therefore ĉ = 0, as the localisation on X is injective
by equivariant formality and [54, Theorem 1.6.2]. Hence c = 0. This means that ˜︁ρ is
injective.

Example 6.1.2. We extend Remark 5.3.4. We described there the discriminant variety
Y ⊂ X = P3. Consider the action of G = SL2 on it. If we view the elements of C4 as the
polynomials ax3 + bx2y + cxy2 + dy3, then Y is defined by the equation

27a2d2 + 4ac3 + 4b3d− b2c2 − 18abcd = 0.

It parametrises polynomials with multiple roots, or rather – in homogeneous language –
polynomials that contain a square in the decomposition into linear terms. The variety
consists of two SL2 orbits. The first one is smooth and dense in Y and it consists of
polynomials with two distinct factors:

U = {f 2g|f, g ∈ spanC[x, y]f ̸= g}.

The second one is closed in Y and it consists of cubes of linear factors:

D = {f 3|f ∈ spanC[x, y]}.
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The variety Y is singular along the latter. As dim Y = 2 and dimD = 1, the variety is
not even normal. In fact, on the slice b = 0 we see the classical cuspidal curve, as then,
assuming a = 1, the discriminant classically degenerates to 27d2 + 4c3.

However, as we mentioned in Remark 5.3.4, Y contains all the T-fixed points of X and so
ZX = ZY . Topologically Y is homeomorphic to P1 × P1. The isomorphism P1 × P1 → Y
maps

(f, g) ↦→ f 2g,

where we view elements of P1 as homogeneous linear polynomials. We have

H∗(P1 × P1) = C[x, y]/(x2, y2)

with deg x = deg y = 2. Hence the PH∗(Y )(t) = (1 + t2)2. From equivariant formality we
then have

PH∗
G(Y )(t) = PH∗(Y )(t) · PH∗

G
(t) = (1 + t2)2

(1 − t4) = 1 + 2(t2 + t4 + t6 + . . . ).

On the other hand,

P˜︁H∗
G(Y )(t) = PH∗

G(X)(t) = 1 + t2 + t4 + t6

(1 − t4) = 1 + t2 + 2(t4 + t6 + . . . ).

Notice that unlike in Proposition 5.3.1, where the restriction on equivariant cohomology
was surjective, here the restriction is not surjective, but injective – however, only in
equivariant cohomology. As we can see from the Poincaré series, in ˜︂H∗

G(Y ) there is one
missing dimension in H2. In fact, by the description of the isomorphism P1 × P1 → Y ,
one sees that ˜︂H2

G(Y ) is spanned by 2x̂+ ŷ, where x̂ and ŷ are the generators of the two
copies of H∗

G(P1).

6.2 Non-regular actions
Most of the theorems we have proved so far on equivariant cohomology, e.g. Theorem
5.2.1, Theorem 5.3.1, Theorem 6.1.1, relied on the assumption that the linear group H
acts regularly, i.e. with a single zero of the regular nilpotent e ∈ h. A particular exception
is Theorem 5.3.16, where we work under the assumption a torus acts on X, making it a
GKM space. Note that for a torus T, the only regular nilpotent in t is 0 – and in fact,
that is the only nilpotent. Therefore no torus action on a nontrivial variety can be regular,
as the zero set of 0 is the whole variety. However, as in Theorem 5.3.16, we can recover
the equivariant cohomology as the ring of functions on the zero scheme also in some of
those cases. This therefore motivates the following question: is there some joint set of
assumptions, generalising the GKM and regular case, under which we can prove that the
ring of functions on the zero scheme equals the equivariant cohomology ring? In this
section we provide one particular weakening of the regularity assumption, where some of
the results still hold. This covers many interesting examples, such as spherical varieties.

Theorem 6.2.1. Assume that a principally paired group H acts on a smooth projective
variety X. Let S ⊂ h be the Kostant section. Let Z ⊂ S ×X be the zero scheme of the
vector field restricted from the total vector field on h ×X. Assume that dim Z = dim S.
Then there is an isomorphism

H∗
H(X,C) → C[Z]
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of graded C[S] ≃ H∗
H(pt,C)-algebras. In other words, the following diagram is commuta-

tive.
H∗

H(X,C) C[Z]

H∗
H(pt,C) C[S]

ρ

≃

The grading on C[Z] is defined by the action of C× given by

t · (v, x) =
(︃ 1
t2

AdHt(v), H tx
)︃
.

Moreover, H i(Z,OZ) = 0 for any i > 0.

Remark 6.2.2. Note first that any regular action satisfies the dim Z = dim S condition.
Indeed, by Lemma 3.4.8, in that case all the fibers of the map Z → S are finite. In
addition, all the spherical varieties, and in general all the varieties with finitely many
orbits of H, satisfy the condition. However, the special fibers of Z → S might have
positive dimension. See the details in Example 6.2.3.

Proof of Theorem 6.2.1. First, by the methods of Section 5.2.3, we know that C[Z] is
isomorphic to the ring of W-invariant functions on the analogous zero scheme for a solvable
group. As H∗

H(X) = H∗
T(X)W, we can restrict to H being solvable itself. Therefore we

assume H is solvable from now on. In particular, S = e+ t, where e is the chosen regular
nilpotent, and t = Lie(T) for a maximal torus T containing h.

The scheme Z is defined as a zero scheme of the vector field VS , coming from restriction
of the total vector field to S ×X. The vector field VS is vertical, i.e. at any point (v, x)
it is tangent to {v} ×X. Hence, in fact, it is a section of the vertical tangent bundle Tv,
i.e. the pullback of the tangent bundle of X via the projection S ×X → X.

Note that Tv is a vector bundle of rank equal to n = dimX. Let Ωp
v = ΛpT ∗

v . Then
Lemma 2.2.9 and the condition dim Z = dim S imply that the Koszul complex

0 → Ωn
v

ιVS−−→ Ωn−1
v

ιVS−−→ . . .
ιVS−−→ Ω1

v

ιVS−−→ Ω0
v → 0

is a resolution of OZ . Therefore its hypercohomology equals the cohomology of OZ on
S ×X. But note that

H∗(S ×X,OZ) = H∗(Z,OZ).
Indeed, OZ on S ×X is the pushforward of OZ on Z, and pushforward along a closed
embedding is exact.

Hence H∗(Z,OZ) is isomorphic to the hypercohomology of the Koszul complex. We
denote the Koszul complex by K•, with cohomological grading, where the index ranges
from −n to 0. We know by Corollary 2.2.11 that there is a spectral sequence with the
first page

Epq
1 = Hq(S ×X,Ω−p

v )
convergent to Hp+q(X,OZ). In S = e+ t, the semisimple elements are dense. Indeed, the
regular locus in t is a complement of hyperplanes, cf. Section 5.1.1. By Corollary 3.3.5 for
a regular element v ∈ t, also e+ v is semisimple. The assumption dim Z = dim S implies
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6.2. Non-regular actions

that the generic fibers of the projection Z → S are finite, and hence a generic regular
semisimple element has finitely many zeros. As the T-fixed points are zeros of semisimple
elements, there are only finitely many of them.

In that case, the cohomology of X is Tate, meaning Hq(X,Ωp) = 0 if p ̸= q. Note that
for any vector bundle E on X we have

Hq(S ×X, π∗
2(E)) = Hq(X, E) ⊗ C[t].

The equality clearly holds for global sections and C[t] is flat over C. Therefore in the
spectral sequence above, the only potentially nonzero entries are

E−p,p
1 = Hp(S ×X,Ωp

v).

First, this means that H i(X,OZ) may only be nonzero if i = 0. It remains to show that
H0(X,OZ) = H∗

T(X,C). We first show that the Poincaré series are equal on both sides.

From the spectral sequence, there is a filtration F∗ on H0(OZ) such that Fp/Fp−1 =
Hp(X,Ωp)⊗C[t]. We follow the idea from the proof of Theorem 4.2.4. We find a C×-action
on the Koszul complex. For t ∈ C×, let tp : Ωp

v → Ωp
v be the pullback of forms along the

map t : X → X. On S ×X the torus C× acts by

t · (e+ v, x) = (e+ t−2v,Ht · x)

and this satisfies the property t∗VS = t2VS . As in the proof of Theorem 4.2.4, the following
is commutative.

0 Ωn
v Ωn−1

v . . . Ω1
v OS×X 0

0 Ωn
v Ωn−1

v . . . Ω1
v OS×X 0

ιVS

t2nt−1
n

ιVS

t2(n−1)t−1
n−1

ιVS ιVS

t2t−1
1 (t−1)∗

ιVS ιVS ιVS ιVS

Hence we have lifted the action of C× on OS×X to the action on the whole Koszul complex.
On the level of the spectral sequence, t ∈ C× acts on Hp(S ×X,Ωp

v) = Hp(X,Ωp) ⊗ C[t]
by t2pt−1

p . As multiplication by t on X is homotopic to the identity, it induces the identity
on Hp(X,Ωp). On C[t], however, the action of t is nontrivial, and the Poincaré series of
C[t] is 1

(1−t2)r . As the spectral sequence is C×-equivariant, we have

PC[Z](t) =
∑︁ dimHp(X,Ωp)t2p

(1 − t2)r = PH∗(X,C)(t)
(1 − t2)r = PH∗

T(X,C)(t),

where the last part follows from equivariant formality.

Now to finish the proof, it would be enough to construct an injective graded map
H∗

T(X,C) → C[Z]. We will show an injective graded map

ρ : H∗
T(X,C) → C[Z]red (6.2)

from the equivariant cohomology to the reduction of the ring of functions on Z. Note that
a priori, the scheme Z could be non-reduced, and so could be C[Z]. However, C[Z]red is
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also a graded ring, and it is a quotient of C[Z], hence every term of PC[Z]red(t) is less than
or equal to the corresponding term in PC[Z](t). Hence an existence of an injective map
(6.2) will also prove that C[Z] is in fact a reduced ring, and hence provide an isomorphism
H∗

T(X,C) → C[Z].
As the scheme Z is Noetherian, the ring C[Z]red is the ring of set-theoretic functions
from the closed points of Z to C, which are given by regular functions in C[Z]. Let
c ∈ H∗

T(X,C). We need to define ρ(c) as a function on the closed points of Z. Let
(e+ w, x) ∈ Z, so that the vector field Ve+w vanishes at x.
From Theorem 3.3.4, there exists M ∈ H such that e+ w = AdM(w + n) with [w, n] = 0
and n nilpotent. Then by Lemma 2.5.2 x = My for some y, which is a zero of w + n.
Let P be an irreducible component of the zero scheme of w + n, which contains y. Then
by Lemma 5.3.12 P contains a fixed point ζi of T. Both P and ζi can be non-unique.
However, let us make a choice for every point (e+ w, x) ∈ Z and define

ρ(c)(e+ w, x) = c|ζi
(w).

Here c|ζi
is an element of H∗

T(pt) = C[t] and hence a function on t, which we apply to w.
We will show that such defined ρ(c) is in C[Z]red – it will follow that the definition does
not depend on the choices. It will also be clear that the map ρ is a homomorphism of
rings, as restriction to the T-fixed points is.
By Lemma 5.1.12 and the remark following it, the algebra H∗

T(X) is generated by the
Chern classes of H-linearised vector bundles. Therefore it is enough to prove that for
c = cT

k (E) the function ρ(c) comes from a regular function. We will prove it by showing
that

ρ(c)(e+ w, x) = TrΛkEx
(Λk(e+ w)x),

as the latter comes from a regular function on Z.
The regularity of the right-hand side implies that the function is constant on any projective
subvariety. Let us consider a fixed (w, x) ∈ Z and M as above, so that e+w = AdM (w+n)
with [w, n] = 0 and n nilpotent, and P an irreducible component of the zero scheme of
w + n, which contains y = M−1x, and ζi ∈ XT ∩ P . As P , and hence also M · P , is
projective, we have

TrΛkEx
(Λk(e+ w)x) = TrΛkEMy

(Λk(e+ w)My) = TrΛkEMζi
(Λk(e+ w)My)

and as E is H-linearised, this is equal to

TrΛkEζi
(Λk(e+ w)y).

Further, as e+ w is a Jordan decomposition, this equals

TrΛkEζi
(Λk(w)y).

By (5.6) this is exactly c|ζi
(w).

Therefore we have defined the map ρ, we only have to show that it is injective. But for
w ∈ treg there exists M ∈ H such that AdM(w) = w + e. Then for any ζi ∈ XT we have

ρ(c)(e+ w,M−1ζi) = c|ζi
(w).

As the regular elements are dense in t, we see that from ρ(c) we can recover the localisations
of c to all the T-fixed points. By injectivity of localisation for equivariantly formal spaces,
from that one can recover c. Hence the map ρ is injective, which finishes the proof.
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Example 6.2.3. Assume that X is a smooth projective spherical variety for a reductive
group G [24]. This means that G acts on X and the Borel subgroup B ⊂ G has an
open dense orbit in X. If G is a torus, then B = G and X is simply a toric variety.
In general, all the wonderful compactifications of G/H for H = Gσ, where σ : G → G
is an involution, are spherical [42]. Classical examples include the variety of complete
collineations [104, 108, 106], which compactifies PGLn, and the variety of complete
quadrics [41, 106, 107], which compactifies SLn /SOn. The renewed interest in spherical
varieties in recent years [99, 15] comes from their connections to mirror symmetry.
All the spherical varieties satisfy the conditions of Theorem 6.2.1. In fact, any smooth
projective G-variety with finitely many orbits of G will satisfy the conditions. Spherical
G-varieties have only finitely many G orbits by [24, 1.5]. Now let us first consider the
single orbit O = G/K for K ⊂ G a subgroup. Let us try to find Zreg ⊂ greg × O, the zero
scheme of the vector field defined by the action, restricted to the regular elements of g.
By homogeneity, the dimensions of all the fibers over the elements of O are the same.
Hence dim Zreg = dim O + dim Zreg

1 , where Zreg
1 is the fiber over [1] = [K] ∈ G/K. But

that fiber is simply equal to greg ∩ k. It is either empty, or of dimension equal to dimK.
Hence Zreg is either empty, or of dimension equal to the dimension of G. The same will
then be true if instead of a single orbit we consider a variety with finitely many orbits.
Now, by the properties of the Kostant section, i.e. Corollary 3.3.18,

dim Z = dim Zreg − (dim G − rk G) = rk G,
hence the assumptions are satisfied.
However, the computations are very tedious, as the scheme Z is in general not affine. So
far, we have not been able to compute any concrete ring of functions on Z for a nontrivial
example, other than a projective space or a toric variety.
Remark 6.2.4. In case G = T is a torus and the action of T is is faithful, the condition
of the lemma can only be satisfied for X being a toric variety. Indeed, in a torus we
have e = 0, hence Z contains {0} ×X as a subscheme. Therefore dimX ≤ dim T. For
a faithful action, this only holds when dimX = dim T and X is toric. In that case, the
variety is also a GKM space, so one can apply Theorem 5.3.16. That theorem holds
for a larger class of spaces, however it does not say anything about higher cohomology
H i(Z,OZ). In fact, if X is not a toric variety, then H i(Z,OZ) might be nonzero even for
i > 0. For example, if X = Gr(4, 2) is the Grassmannian of 2-planes in C4 and T ⊂ SL4
is a maximal torus, of dimension 3, then H2(Z,OZ) = C.

One therefore notices that for a principally paired group G and a smooth projective
G-variety X, there are different levels of correspondence between the ring of functions
and coherent cohomology on Z and the equivariant cohomology of X.

1. If the action of G is regular, then ρ : H∗
G(X) → C[Z] is an isomorphism. Moreover,

the variety Z is affine. Conversely, if Z is affine, then so is any fiber over an element
of S. In particular the zero scheme of e ∈ g is affine. However, it is projective, as X
is projective, hence it is of dimension 0. As e generates an additive subgroup of G,
by Theorem 2.5.5 it has to be connected. Therefore it is just a single, potentially
non-reduced, point. In other words, the action is regular.

2. If the action of G satisfies the condition of Theorem 6.2.1, i.e. dim Z = rk G, then
H∗

G(X) → C[Z] is still an isomorphism, and the higher coherent cohomology of OZ
is trivial. However, Z does not need to be affine anymore.
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3. There are some more situations where the action does not satisfy dim Z = rk G, but
still C[Z] ≃ H∗

G(X). This covers in addition the case of a torus acting on a GKM
space. It is not clear what are the exact conditions under which the isomorphism
holds. Note that at least when the torus-fixed points are isolated, we can still define
the map ρ : H∗

G(X) → C[Z]red.

We then have the following diagram of implications. In the first column we have conditions
on the geometry of G-action, and in the other two the relations between Z and equivariant
cohomology.

Regular action Z ≃ SpecH∗
G(X,C) Zaffine

dim Z = rk G H i(Z,OZ) =

⎧⎨⎩H∗
G(X,C) for i = 0;

0 otherwise
H i(Z,OZ) = 0

for i > 0

? H0(Z,OZ) = H∗
G(X,C)

It is not clear what should replace the question mark and a work is ongoing to determine
under what assumptions this result holds. Apart from the above results, for many affine
Bott–Samelson varieties Löwit [86] proves H∗

G(X,C) ∼= C[Ztot].

We can however clearly state the following problem.

Problem 6.2.5. Determine whether the implications in the second row are equivalences.
That is:

1. does the vanishing of H i(Z,OZ) for i > 0 imply H0(Z,OZ) = H∗
G(X,C);

2. does the vanishing of H i(Z,OZ) for i > 0 together with H0(Z,OZ) = H∗
G(X,C)

imply that dim Z = rk G.

6.3 Fixed point schemes and equivariant K-theory
First question one might ask is about extending the results to other equivariant cohomology
theories. The first non-trivial one, different from equivariant cohomology, is equivariant
K-theory. As noted in Section 2.6.1, the equivariant cohomology H∗

G(pt,C) of the point
is equal to C[t]W = C[g]G. On the other hand, by Section 2.7.3, the equivariant algebraic
K-theory K0

G(pt) ⊗ C of the point with complex coefficients is equal to the representation
ring R(G) of G. That equals C[T]W = C[G]G [39, Theorem 6.1.4].

Hence, to change from equivariant cohomology to equivariant K-theory, we switch from
the G-invariant functions on the Lie algebra, to G-invariant functions on the group. This
suggests that one could recover K-theory by considering the action of the group instead
of the Lie algebra. To this end, for an action of G on a scheme X, define the fixed point
scheme FixG(X)1 by the following pullback diagram.

1This definition was provided by Jakub Löwit
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6.3. Fixed point schemes and equivariant K-theory

FixG(X) G ×X

X X ×X.

ρ×π2

∆

Here X maps to X ×X diagonally and the map G ×X maps (g, x) to (gx, x). Therefore,
the scheme FixG(X) parametrises the pairs (g, x) ∈ G × X, where gx = x. With this,
Tamás Hausel [64] has stated the following conjecture, based on Theorem 5.3.7.

Conjecture 6.3.1. Assume that a principally paired group G acts on a smooth projective
variety regularly. Let G act on FixG(X) by g · (h, x) = (ghg−1, gx). Then the ring
C[FixG(X)]G of G-invariant functions on FixG(X) is an algebra over C[G]G ∼= K0

G(pt)⊗C
isomorphic to the equivariant algebraic K-theory K0

G(X) ⊗ C.

C[FixG(X)]G K0
G(X) ⊗ C

C[G]G K0
G(pt) ⊗ C.

∼=

∼=

One can then additionally ask three questions. First, whether we can also formulate and
prove an analog of Theorem 5.2.11, where the total zero scheme is replaced with the
zero scheme over the Kostant section. It seems an appropriate equivalent of the Kostant
section is the Steinberg section [72, 4.15], therefore we would like to prove also the analog
of Theorem 5.2.11, with the Steinberg section replacing the Kostant section. One would
expect that the potential proof, as in [66], should start from considering the solvable case.
Therefore one additional challenge is to find an appropriate notion of Steinberg section for
solvable, or arbitrary principally paired groups, as we do in Section 3.3 for the Kostant
section. If G a semisimple simply connected group, Holmes [69] has proved that the fixed
point scheme for any partial flag variety G/P over the Steinberg section is the spectrum
of the equivariant K-theory.

Additionally, there exists the equivariant Chern character map, reviewed in Section 2.7.4,
from equivariant K-theory to cohomology. This means that on the scheme level, we should
get an analogous map in the other direction. Note that as the Chern character maps
to the completion of cohomology, it will not give rise to an algebraic map. It has to be
rather considered as a map from a formal scheme or a complex analytic map. In fact, we
expect that the Chern character yields the G-equivariant map

(v, x) ↦→ (exp(v), x)

from Ztot to FixG(X). Therefore along with proving Conjecture 6.3.1, we would like to
show how the Chern character can be seen geometrically. Note that this may require
taking total fixed point and zero schemes into account, as the exponential of the Kostant
section is usually not in the Steinberg section. Alternatively, one might use a different
section in the group.

Third, one could ask again how important the regularity assumption is. In fact, Löwit
[86] proves the claim for affine Bott–Samelson varieties.

Finally, we prove a K-theory analog of the GKM theorem for cohomology 5.3.16.
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Theorem 6.3.2. Let a torus T ∼= (C×)r act on a smooth projective complex variety X with
finitely many zero and one-dimensional orbits. Let Fix′

T(X) be the subscheme of FixT(X),
given by reduction. Then C[Fix′

T(X)] ∼= K0
T(X) ⊗ C as algebras over C[T] ≃ K0

T(pt) ⊗ C:

C[Fix′
T(X)] K0

T(X) ⊗ C

C[T] K0
T(pt) ⊗ C.

∼=

∼=

Proof. We proceed as in the proof of Theorem 5.3.16. We construct first a map

ρ : K0
T(X) ⊗ C → C[FixT(X)]

and then an injective left inverse.

We can define ρ by its values, as Fix′
T(X) is reduced. For any T-linearised vector bundle

E on X let
ρ(E)(t, p) = TrEp(t).

Note that if 0 → E → F → G → 0 is an exact sequence of T-linearised vector bundles,
then for any (t, p) ∈ Fix′

T(X) we have TrFp(t) = TrEp(t)+TrGp(t). Therefore the function ρ
is well defined on K0

T(X), and by definition it always gives a regular function on FixT(X).

As in Theorem 5.3.16, let us denote the T-fixed points by ζ1, ζ2, . . . , ζs and the one-
dimensional orbits by E1, E2, . . . , Eℓ. The closure of any Ei is an embedding of P1

and contains two fixed points ζi0 and ζi∞ , which for any x ∈ Ei are equal to the limits
limt→0 tx and limt→∞ tx. The action of T on Ei has a kernel Ki of codimension 1. Then
by [95, Corollary A.5] the localisation KT(X) → KT(XT) is injective and its image is

H =
{︄

(f1, f2, . . . , fs) ∈ C[T]s
⃓⃓⃓⃓
⃓ fi0|Ki

= fi∞|Ki
for j = 1, 2, . . . , ℓ

}︄
.

We will use Lemma 5.3.8 again. Take any (t, p) ∈ Fix′
T(X). Then p lies in the fixed

point scheme of t ∈ T. As T is commutative, any translate of p is also a fixed point of
t. Therefore we have {t} × T · p ⊂ Fix′

T(X) as a closed subvariety. Then by the Borel
fixed point theorem it contains a fixed point of the whole torus. Hence the conditions
of Lemma 5.3.8 are satisfied for the inclusion T × XT ⊂ FixT(X), so the restriction of
global functions C[Fix′

T(X)] → C[T ×XT] is injective.

From this, we construct an injective left inverse of ρ. First, note that C[T ×XT] = C[T]s.
Then notice that the restriction τ : C[Fix′

T(X)] → C[T ×XT] = C[T]s actually maps into
H. Indeed, take i ∈ {1, 2, . . . , ℓ}. We want to prove that for any f ∈ C[Fix′

T(X)] the
functions τ(f)|T×ζi0

and τ(f)|T×ζi∞ are equal as functions on T.

Indeed, in the fixed point scheme, for any t ∈ Ki both points (t, ζi0) and (t, ζi∞) lie in the
same connected projective subvariety t× Ei. Therefore the values of f on those points
are the same.

We proved that τ is injective, we only need to prove that τ ◦ ρ = id. Take a class
[E ] ∈ K0

T(X), where E is a T-linearised vector bundle on X. Then τ ◦ ρ([E ]) is a function
on T × XT s which at the point (t, ζi) attains the value TrEζi

(t). When we fix ζi, this
means that we restrict E to ζi to get a representation of T, and then we check what the
trace of t on it is. But this is exactly how we define the isomorphism K∗

0 (pt) → C[T].
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Remark 6.3.3. The zeros of a torus action on a smooth variety are reduced, cf. Theorem
2.5.6. Therefore the author also expects the scheme FixT(X) to actually be reduced in
this situation, so that FixT(X) = Fix′

T(X). However, the exact argument is missing.
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